Высоковольтные генераторы напряжения с емкостными накопителями энергии. ¡ — Опыты с конденсаторами Вот и все?

Мой компьютер

Генераторы импульсных напряжений (ГИН) служат для испытания изоляции электрооборудования грозовыми импульсами с целью координации электрической прочности изоляции с воздействующими на нее грозовыми перенапряжениями. Испытания проводятся полными стандартными импульсами 1,2/50 мкс, а также срезанными импульсами при предразрядном времени 2-3 мкс.

ГИН представляет собой батарею конденсаторов высокого напряжения, работающих в режиме заряд-разряд и обеспечивающих при разряде весьма высокие импульсные напряжения. Конденсаторы в зарядном режиме включены параллельно, а в разрядном – последовательно. Переключение конденсаторов осуществляется с помощью искровых разрядников (обычно шаровых). Кроме того ГИН включает в себя измерительное устройство и устройство для заземления и снятия остаточных зарядов с конденсаторов после окончания работы.

Рассмотрим схему многоступенчатого или многокаскадного ГИН (рис.10.10.). Работа ГИН, как уже отмечалось выше, складывается из двух стадий: заряда и разряда. Длительность разряда в несколько миллионов раз меньше длительности заряда, чем и достигается большая мощность испытательного импульса.

Рассмотрим подробнее обе стадии работы ГИН. В стадии заряда конденсаторы С заряжаются от выпрямительной установки через защитный резистор R защ и зарядные резисторы R з . Резистор R защ предотвращает перегрузку трансформатора Т и вентиля В в первый момент, когда напряжения на конденсаторах равно нулю. Поскольку R защ >> R з , то конденсаторы С практически оказываются соединенными параллельно и одновременно заряжаются до одинаковых напряжений: U о = 150-200 кВ. Полное время заряда ГИН достигает нескольких десятков секунд при сравнительно низких напряжениях и несколько минут у ГИН на очень высокие напряжения.


После пробоя ПР 1 точка 5 получает потенциал 2U о , а в точке 6 потенциал повышается до значения 3U о , что приводит к срабатыванию разрядника ПР 2 . Аналогично срабатывают промежуточные разрядники всех ступеней ГИН. Процесс поочередного автоматического срабатывания искровых разрядников обеспечивает быстрый автоматический переход заряженных конденсаторов с параллельного соединения на последовательное, в результате чего напряжение конденсаторов суммируется и становится близким к значениям nU о (где n – число конденсаторов ГИН).

Под действием этого напряжения отсекающий разрядник ОР пробивается и на объекте испытания ОИ возникает импульс высокого напряжения в несколько сотен тысяч и даже миллионов вольт. Напряжение на объекте испытания будет постепенно возрастать от нуля до максимума, а затем спадает до нуля. Форма импульса напряжения была подробно рассмотрена в главе 4.

Величина напряжения импульса регулируется путем изменения зарядного напряжения конденсаторов U о . При этом, естественно, подлежит регулированию также и расстояние между электродами искровых промежутков. Регулирование осуществляется дистанционно.

Пуск ГИН может осуществляться и без управляющего импульса, подаваемого на ЗР. Если промежуток ЗР установить на пробивное напряжение, равное заданному значению U о , то ГИН будет «самостоятельно» срабатывать каждый раз, как только напряжение на конденсаторах достигнет значения U о . Напряжение U 1 = nU o называется суммарным зарядным напряжением ГИН.

Наибольшее суммарное зарядное напряжение, определяемое номинальным напряжением конденсаторов, является одной из паспортных величин ГИН (nU ном ). Другой паспортной величиной является наибольшее значение запасенной в ГИН энергии (nCU 2 ном /2 ).

Амплитуда импульса напряжения, создаваемого ГИН, определяется соотношением

где h - коэффициент использования ГИН, который лежит в пределах

Длительность фронта и длительность импульса регулируют подбором фронтового резистора R ф , разрядного резистора R р и фронтовой емкости С Ф .

Мощность зарядного трансформатора Т в первом приближении определяется средним значением удвоенной величины энергии, запасаемой в конденсаторах в единицу времени.

Емкость ГИН в разряде;

- суммарная емкость, равная сумме емкостей объекта С о , соединительных проводов С П и оборудования, подключенного параллельно объекту С Ф .

R Ф так называемое «фронтовое» сопротивление, включаемое для увеличения

длительности фронта импульса;

R p – разрядное сопротивление (им может быть делитель напряжения).

После замыкания ключа S, соответствующего пробою искровых промежутков, в схеме возникает переходный процесс, в результате которого на выходе схемы появляется апериодический импульс напряжения u 2 .

Система уравнений, составленных по законам Кирхгофа для послекоммутационной схемы имеет вид:

(6.1)

Выразим токи i p и i через u 2 :

; ;

и подставим эти значения во второе уравнение системы (10.1):

Продифференцируем это уравнение:

и приведем подобные члены:

Разделим все члены этого уравнения на R Ф С х и получим приведенное дифференциальное уравнение второго порядка:

Решение дифференциального уравнения (10.2) будем искать, используя классический метод, в виде суммы установившейся и свободной составляющих:

Установившаяся составляющая, определяемая видом правой части уравнения (10.2), равна нулю, а свободная составляющая ищется в виде:

где А 1 и А 2 – постоянные интегрирования, определяемые из начальных

р 1 и р 2 – корни характеристического уравнения.

Характеристическое уравнение дифференциального уравнения (10.2) имеет вид:

.

Обозначим R р С Г = Т 1 и R Ф С Х = Т 2 .

Используя соотношения для корней квадратного уравнения:

;

можно приближенно определить корни характеристического уравнения

.

Следовательно напряжение U 2 на выходе ГИН будет изменяться по закону:

. (6.3)

Постоянные интегрирования определим из начальных условий (НУ): t = 0 , u 1 = nU o , u 2 = 0 .

Подставив НУ в уравнение (10.3), получим:

Продифференцируем уравнение (10.3):

и подставим в него НУ:

. (6.5)

Решая уравнения (10.4) и (10.5), определим А 1 и А 2 :

; .

Следовательно выходное напряжение ГИН будет изменяться по закону:

. (6.6)

Кривая, построенная по уравнению (10.6) приведена на рис.6.12.

На основании проведенного анализа можно заключить, что скорость заряда емкости С х через резистор R Ф (или постоянная времени Т 2 = R Ф С х ) определяет время нарастания напряжения u 2 , т.е. длительность фронта импульса t Ф . Скорость же разряда емкости С Г на сопротивление R р (или постоянная времени Т 1 = R р С г ) определяет в основном длительность импульса t u . Таким образом, время нарастания и длину импульса регулируют, подбирая С Ф , R Ф и R р .

Длительность импульса и длительность фронта импульса связаны с параметрами схемы ГИН (при импульсах с крутым фронтом) соотношениями:

;

.

Отсюда следует, что стандартные грозовые импульсы генерируются при Т 1 = 71,5 мкс и Т 2 = 0,5 мкс.

Перед испытанием полным импульсом при напряжении, составляющем 50-60 % испытательного с помощью делителя напряжения и осциллографа проверяется форма импульса, а также производится градуировка измерительного устройства. Затем напряжение импульса доводят до нормированного значения с точностью ± 3 %. Испытательное напряжение устанавливают с учетом атмосферных условий во время испытаний.

Генераторы внутренних перенапряжений (ГВП) генерируют коммутационные импульсы напряжения. Для получения апериодических коммутационных импульсов с длительностью фронта до 1000 мкс применяются генераторы импульсных напряжений, рассмотренные в разделе 10.4. Увеличение длительности фронта достигается включением большого фронтового сопротивления и дополнительной емкости параллельно объекту испытания.

Для генерирования колебательных коммутационных импульсов может быть использована схема, показанная на рис.10.13. Испытательный трансформатор Т возбуждается от двух встречно включенных колебательных контуров. Для этого предварительно от выпрямительной установки заряжаются до одинакового напряжения батареи конденсаторов С 1 и С 2 .


Пуск схемы осуществляется управляющим импульсом напряжения U y , вызывающим пробой шарового разрядника ШР. При этом начинается колебательный разряд в контурах С 1 – L 1 и C 2 – L 2 . Собственные частоты контуров выбираются существенно различными (f 2 = 3 – 5 f 1 ) и на обмотку низшего напряжения подается колебательный затухающий импульс, плавно нарастающий с нуля. Такой же формы импульс генерируется в обмотке высшего напряжения испытательного трансформатора.

ГВП на основе высоковольтных трансформаторов могут генерировать напряжения сравнительно низких частот, лимитируемых индуктивностью трансформаторов. Более высокочастотные импульсы перенапряжений могут быть получены с помощью ГВП, в которых происходит наложение импульсов от двух встречно включенных ГИН, один из которых содержит реакторы L 1 , а другой резисторы R 1 (рис.10.14).

Заряд обоих ГИН от источника постоянного напряжения происходит одновременно. В момент перекрытия разрядного промежутка P 3 каскадно срабатывают промежутки Р 1 , Р 2 и Р 4 , Р 5 . Разряд конденсаторов С 1 на реакторы L 1 вызывает появление на них периодически изменяющегося затухающего напряжения с частотой . Это напряжение суммируется с апериодическим импульсом напряжения, возникающим на резисторах R 1 от разряда на них конденсаторов С 2

Конденсатор – это элемент электрической цепи, который способен накапливать электрический заряд. Важной особенностью конденсатора является его свойство не только накапливать, но и отдавать заряд, причем практически мгновенно.

Согласно второму закону коммутации напряжение на конденсаторе не может измениться скачком. Эта особенность активно используется в различных фильтрах, стабилизаторах, интегрирующих цепях, колебательных контурах и тд.

В том, что напряжение не может измениться мгновенно, можно убедиться из формулы

Если бы напряжение в момент коммутации изменилось скачком, это означало бы, что скорость изменения du/dt = ∞, чего в природе быть не может, так как потребовался бы источник бесконечной мощности.

Процесс заряда конденсатора


На схеме представлена RC – цепь (интегрирующая), запитанная от постоянного источника питания. При замыкании ключа в положение 1 происходит заряд конденсатора. Ток проходит по цепи: “плюс” источника – резистор – конденсатор - “минус” источника.

Напряжение на обкладках конденсатора изменяется по экспоненциальному закону. Ток, протекающий через конденсатор, также изменяется по экспоненте. Причем эти изменения взаимообратны, чем больше напряжение, тем меньше ток, протекающий через конденсатор. Когда напряжение на конденсаторе сравняется с напряжением источника, процесс заряда прекратится, и ток в цепи перестанет течь.



Теперь, если мы переключим ключ в положение 2, то ток потечет в обратную сторону, а именно по цепи: конденсатор – резистор – “минус” источника. Таким образом, конденсатор разрядится. Процесс будет носить также экспоненциальный характер.

Важной характеристикой данной цепи является произведение RC , которую еще называют постоянной времени τ . За время τ конденсатор заряжается или разряжается на 63%. За 5 τ конденсатор отдает или принимает заряд полностью.

От теории перейдем к практике. Возьмем конденсатор на 0,47 мкФ и резистор номиналом 10 КОм.

Рассчитаем примерное время, за которое должен зарядиться конденсатор.

Теперь соберем данную схему в multisim и попробуем промоделировать


Собранная схема, запитана от батареи 12 В. Меняя положение переключателя S1, мы сначала заряжаем, а затем разряжаем конденсатор через сопротивление R = 10 КОм. Для того чтобы увидеть наглядно работу схемы посмотрите видео ниже.

Если соединить резистор и конденсатор, то получится пожалуй одна из самых полезных и универсальных цепей.

О многочисленных способах применения которой я сегодня и решил рассказать. Но вначале про каждый элемент в отдельности:

Резистор — его задача ограничивать ток. Это статичный элемент, чье сопротивление не меняется, про тепловые погрешности сейчас не говорим — они не слишком велики. Ток через резистор определяется законом ома — I=U/R , где U напряжение на выводах резистора, R — его сопротивление.

Конденсатор штука поинтересней. У него есть интересное свойство — когда он разряжен то ведет себя почти как короткое замыкание — ток через него течет без ограничений, устремляясь в бесконечность. А напряжение на нем стремится к нулю. Когда же он заряжен, то становится как обрыв и ток через него течь перестает, а напряжение на нем становится равным заряжающему источнику. Получается интересная зависимость — есть ток, нет напряжения, есть напряжение — нет тока.

Чтобы визуализировать себе этот процесс, представь ган… эмм.. воздушный шарик который наполняется водой. Поток воды — это ток. Давление воды на упругие стенки — эквивалент напряжения. Теперь смотри, когда шарик пуст — вода втекает свободно, большой ток, а давления еще почти нет — напряжение мало. Потом, когда шарик наполнится и начнет сопротивляться давлению, за счет упругости стенок, то скорость потока замедлится, а потом и вовсе остановится — силы сравнялись, конденсатор зарядился. Есть напряжение натянутых стенок, но нет тока!

Теперь, если снять или уменьшить внешнее давление, убрать источник питания, то вода под действием упругости хлынет обратно. Также и ток из конденсатора потечет обратно если цепь будет замкнута, а напряжение источника ниже чем напряжение в конденсаторе.

Емкость конденсатора. Что это?
Теоретически, в любой идеальный конденсатор можно закачать заряд бесконечного размера. Просто наш шарик сильней растянется и стенки создадут большее давление, бесконечно большое давление.
А что же тогда насчет Фарад, что пишут на боку конденсатора в качестве показателя емкости? А это всего лишь зависимость напряжения от заряда (q = CU). У конденсатора малой емкости рост напряжения от заряда будет выше.

Представь два стакана с бесконечно высокими стенками. Один узкий, как пробирка, другой широкий, как тазик. Уровень воды в них — это напряжение. Площадь дна — емкость. И в тот и в другой можно набузолить один и тот же литр воды — равный заряд. Но в пробирке уровень подскочит на несколько метров, А в тазике будет плескаться у самого дна. Также и в конденсаторах с малой и большой емкостью.
Залить то можно сколько угодно, но напряжение будет разным.

Плюс в реале у конденсаторов есть пробивное напряжение, после которого он перестает быть конденсатором, а превращается в годный проводник:)

А как быстро заряжается конденсатор?
В идеальных условиях, когда у нас бесконечно мощный источник напряжения с нулевым внутренним сопротивлением, идеальные сверхпроводящие провода и абсолютно безупречный конденсатор — этот процесс будет происходить мгновенно, с временем равным 0, равно как и разряд.

Но в реальности всегда существуют сопротивления, явные — вроде банального резистора или неявные, такие как сопротивление проводов или внутреннее сопротивление источника напряжения.
В этом случае скорость заряда конденсатора будет зависить от сопротивлений в цепи и емкости кондера, а сам заряд будет идти по экспоненциальному закону .


А у этого закона есть пара характерных величин:

  • Т — постоянная времени , это время при котором величина достигнет 63% от своего максимума. 63% тут взялись не случайно, тут прямая завязка на такую формулу VALUE T =max—1/e*max.
  • 3T — а при троекратной постоянной значение достигнет 95% своего максимума.

Постоянная времени для RC цепи Т=R*C .

Чем меньше сопротивление и меньше емкость, тем быстрей конденсатор заряжается. Если сопротивление равно нулю, то и время заряда равно нулю.

Рассчитаем за сколько зарядится на 95% конденсатор емкостью 1uF через резистор в 1кОм:
T= C*R = 10 -6 * 10 3 = 0.001c
3T = 0.003c через такое время напряжение на конденсаторе достигнет 95% от напряжения источника.

Разряд пойдет по тому же закону, только вверх ногами. Т.е. через Твремени в на конденсаторе остаенется всего лишь 100% — 63% = 37% от первоначального напряжения, а через 3T и того меньше — жалкие 5%.

Ну с подачей и снятием напряжения все ясно. А если напряжение подали, а потом еще ступенчато подняли, а разряжали также ступеньками? Ситуация тут практически не изменится — поднялось напряжение, конденсатор дозарядился до него по тому же закону, с той же постоянной времени — через время 3Т его напряжение будет на 95% от нового максимума.
Чуть понизилось — подразрядился и через время 3Т напряжение на нем будет на 5% выше нового минимума.
Да что я тебе говорю, лучше показать. Сварганил тут в мультисиме хитровыдрюченный генератор ступечнатого сигнала и подал на интегрирующую RC цепочку:


Видишь как колбасится:) Обрати внимание, что и заряд и разряд, вне зависимости от высоты ступеньки, всегда одной длительности!!!

А до какой величины конденсатор можно зарядить?
В теории до бесконечности, этакий шарик с бесконечно тянущимися стенками. В реале же шарик рано или поздно лопнет, а конденсатор пробьет и закоротит. Вот поэтому у всех конденсаторов есть важный параметр — предельное напряжение . На электролитах его часто пишут сбоку, а на керамических его надо смотреть в справочниках. Но там оно обычно от 50 вольт. В общем, выбирая кондер надо следить, чтобы его предельное напряжение было не ниже того которое в цепи. Добавлю что при расчете конденсатора на переменное напряжение следует выбирать предельное напряжение в 1.4 раза выше. Т.к. на переменном напряжении указывают действующее значение, а мгновенное значение в своем максимуме превышает его в 1.4 раза.

Что следует из вышеперечисленного? А то что если на конденсатор подать постоянное напряжение, то он просто зарядится и все. На этом веселье закончится.

А если подать переменное? То очевидно, что он будет то заряжаться, то разряжаться, а в цепи будет туда и обратно гулять ток. Движуха! Ток есть!

Выходит, несмотря на физический обрыв цепи между обкладками, через конденсатор легко протекает переменный ток, а вот постоянному слабо.

Что нам это дает? А то что конденсатор может служить своего рода сепаратором, для разделения переменного тока и постоянного на соответствующие составляющие.

Любой изменяющийся во времени сигнал можно представить как сумму двух составляющих — переменной и постоянной.


Например, у классической синусоиды есть только переменная часть, а постоянная равна нулю. У постоянного же тока наоборот. А если у нас сдвинутая синусоида? Или постоянная с помехами?

Переменная и постоянная составляющие сигнала легко разделяются!
Чуть выше я тебе показал как конденсатор дозаряжается и подразряжается при изменениях напряжения. Так что переменная составляющая сквозь кондер пройдет на ура, т.к. только она заставляет конденсатор активно менять свой заряд. Постоянная же как была так и останется и застрянет на конденсаторе.

Но чтобы конденсатор эффективно разделял переменную составляющую от постоянной частота переменной составляющей должна быть не ниже чем 1/T

Возможны два вида включения RC цепочки:
Интегрирующая и дифференцирующая . Они же фильтр низких частот и фильтр высоких частот.

Фильтр низких частот без изменений пропускает постоянную составляющую (т.к. ее частота равна нулю, ниже некуда) и подавляет все что выше чем 1/T. Постоянная составляющая проходит напрямую, а переменная составляющая через конденсатор гасится на землю.
Такой фильтр еще называют интегрирующей цепочкой потому, что сигнал на выходе как бы интегрируется. Помнишь что такое интеграл? Площадь под кривой! Вот тут она и получается на выходе.

А дифференцирующей цепью ее называют потому, что на выходе у нас получается дифференциал входной функции, который есть не что иное как скорость изменения этой функции.


  • На участке 1 происходит заряд конденсатора, а значит через него идет ток и на резисторе будет падение напряжения.
  • На участке 2 происходит резкое увеличение скорости заряда, а значит и ток резко возрастет, а за ним и падение напряжения на резисторе.
  • На участке 3 конденсатор просто удерживает уже имеющийся потенциал. Ток через него не идет, а значит на резисторе напряжение тоже равно нулю.
  • Ну и на 4м участке конденсатор начал разряжаться, т.к. входной сигнал стал ниже чем его напряжение. Ток пошел в обратную сторону и на резисторе уже отрицательное падение напряжения.

А если подать на вход прямоугольнй импульс, с очень крутыми фронтами и сделать емкость конденсатора помельче, то увидим вот такие иголки:

прямоугольник. Ну, а чо? Правильно — производная от линейной функции есть константа, наклон этой функции определяет знак константы.

Короче, если у тебя сейчас идет курс матана, то можешь забить на богомерзкий Mathcad, отвратный Maple, выбросить из головы матричную ересь Матлаба и, достав из загашников горсть аналоговой рассыпухи, спаять себе истинно ТРУЪ аналоговый компьютер:) Препод будет в шоке:)

Правда на одних только резисторах кондерах интеграторы и диффернциаторы обычно не делают, тут юзают операционные усилители. Можешь пока погуглить на предмет этих штуковин, любопытная вещь:)

А вот тут я подал обычный приямоугольный сигнал на два фильтра высоких и низких частот. А выходы с них на осциллограф:

Вот, чуть покрупней один участок:

При старте кондер разряжен, ток через него вваливат на полную, а напряжение на нем мизерное — на входе RESET сигнал сброса. Но вскоре конденсатор зарядится и через время Т его напряжение будет уже на уровне логической единицы и на RESET перестанет подаваться сигнал сброса — МК стартанет.
А для AT89C51 надо с точностью наоборот RESET организовать — вначале подать единицу, а потом ноль. Тут ситуация обратная — пока кондер не заряжен, то ток через него течет большой, Uc — падение напряжения на нем мизерное Uc=0. А значит на RESET подается напряжение немногим меньше напряжения питания Uпит-Uc=Uпит.
Но когда кондер зарядится и напряжение на нем достигнет напряжения питания (Uпит=Uс), то на выводе RESET уже будет Uпит-Uc=0

Аналоговые измерения
Но фиг сними с цепочками сброса, куда прикольней использовать возможность RC цепи для замера аналоговых величин микроконтроллерами в которых нет АЦП.
Тут используется тот факт, что напряжение на конденсаторе растет строго по одному и тому же закону — экспоненте. В зависимости от кондера, резистора и питающего напряжения. А значит его можно использовать как опорное напряжение с заранее известными параметрами.

Работает просто, мы подаем напряжение с конденсатора на аналоговый компаратор, а на второй вход компаратора заводим измеряемое напряжение. И когда хотим замерить напряжение, то просто вначале дергаем вывод вниз, чтобы разрядить конденсатор. Потом возвращем его в режим Hi-Z, cбрасываем и запускаем таймер. А дальше кондер начинает заряжаться через резистор и как только компаратор доложит, что напряжение с RC догнало измеряемое, то останавливаем таймер.


Зная по какому закону от времени идет возрастание опорного напряжения RC цепи, а также зная сколько натикал таймер, мы можем довольно точно узнать чему было равно измеряемое напряжение на момент сработки компаратора. Причем, тут не обязательно считать экспоненты. На начальном этапе зарядки кондера можно предположить, что зависимость там линейная. Или, если хочется большей точности, аппроксимировать экспоненту кусочно линейными функциями, а по русски — отрисовать ее примерную форму несколькими прямыми или сварганить таблицу зависимости величины от времени, короче, способов вагон просто.

Если надо заиметь аналоговую крутилку, а АЦП нету, то можно даже компаратор не юзать. Дрыгать ножкой на которой висит конденсатор и давать ему заряжаться через перменный резистор.

По изменению Т, которая, напомню T=R*C и зная что у нас С = const, можно вычислить значение R. Причем, опять же необязательно подключать тут математический аппарат, в большинстве случаев достаточно сделать замер в каких-нибудь условных попугаях, вроде тиков таймера. А можно пойти другим путем, не менять резистор, а менять емкость, например, подсоединяя к ней емкость своего тела… что получится? Правильно — сенсорные кнопки!

Если что то непонятно, то не парься скоро напишу статью про то как прикрутить к микроконтроллеру аналоговую фиговину не используя АЦП. Там подробно все разжую.

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Заряд конденсатора

Для того чтобы зарядить конденсатор, необходимо включить его в цепь постоянного тока. На рис. 1 показана схема заряда конденсатора. Конденсатор С присоединен к зажимам генератора. При помощи ключа можно замкнуть или разомкнуть цепь. Рассмотрим подробно процесс заряда конденсатора.

Генератор обладает внутренним сопротивлением. При замыкании ключа конденсатор зарядится до напряжения между обкладками, равного э. д. с. генератора: Uс = Е. При этом обкладка, соединенная с положительным зажимом генератора, получает положительный заряд (+q ), а вторая обкладка получает равный по величине отрицательный заряд (-q ). Величина заряда q прямо пропорциональна емкости конденсатора С и напряжению на его обкладках: q = CUc

P ис. 1

Для того чтобы обкладки конденсатора зарядились, необходимо, чтобы одна из них приобрела, а другая потеряла некоторое количество электронов. Перенос электронов от одной обкладки к другой совершается по внешней цепи электродвижущей силой генератора, а сам процесс перемещения зарядов по цепи есть не что иное, как электрический ток, называемый зарядным емкостным током I зар.

Зарядный ток в цени протекает обычно тысячные доли секунды до тех пор, пока напряжение на конденсаторе достигнет величины, равной э. д. с. генератора. График нарастания напряжения на обкладках конденсатора в процессе его заряда представлен на рис. 2,а, из которого видно, что напряжение Uc плавно увеличивается, сначала быстро, а затем все медленнее, пока не станет равным э. д. с. генератора Е. После этого напряжение на конденсаторе остается неизменным.


Рис. 2. Графики напряжения и тока при заряде конденсатора

Пока конденсатор заряжается, по цепи проходит зарядный ток. График зарядного тока показан на рис. 2,б. В начальный момент зарядный ток имеет наибольшую величину, потому что напряжение на конденсаторе еще равно нулю, и по закону Ома io зар = E/ Ri , так как вся э. д. с. генератора приложена к сопротивлению Ri.

По мере того как конденсатор заряжается, т. е. возрастает напряженно на нем, для зарядного тока уменьшается. Когда напряженно па конденсаторе уже имеется, падение напряжения на сопротивление будет равно разности между э. д. с. генератора и напряжением на конденсаторе, т. е. равно Е - U с. Поэтому i зар = (E-Uс)/Ri

Отсюда видно, что с увеличением Uс уменьшается i зар и при Uс = E зарядный ток становится равным нулю.

Продолжительность процесса заряда конденсатора зависит от двух величии:

1) от внутреннего сопротивления генератора Ri ,

2) от емкости конденсатора С.

На рис. 2 показаны графики нарядных токов для конденсатора емкостью 10 мкф: кривая 1 соответствует процессу заряда от генератора с э. д. с. Е = 100 В и с внутренним сопротивлением Ri = 10 Ом, кривая 2 соответствует процессу заряда от генератора с такой же э. д. с, но с меньшим внутренним сопротивлением: Ri = 5 Ом.

Из сравнения этих кривых видно, что при меньшем внутреннем сопротивлении генератора сила нарядного тока в начальный момент больше, и поэтому процесс заряда происходит быстрее.

Рис. 2. Графики зарядных токов при разных сопротивлениях

На рис. 3 дается сравнение графиков зарядных токов при заряде от одного и того же генератора с э. д. с. Е = 100 В и внутренним сопротивлением Ri = 10 ом двух конденсаторов разной емкости: 10 мкф (кривая 1) и 20 мкф (кривая 2).

Величина начального зарядного тока io зар = Е/Ri = 100/10 = 10 А одинакова для обоих конденсаторов, по так как конденсатор большей емкости накапливает большее количество электричества, то зарядный его ток должен проходить дольше, и процесс заряда получается более длительным.

Рис. 3. Графики зарядных токов при разных емкостях

Разряд конденсатора

Отключим заряженный конденсатор от генератора и присоединим к его обкладкам сопротивление.

На обкладках конденсатора имеется напряжение U с, поэтому в замкнутой электрической цепи потечет ток, называемый разрядным емкостным током i разр.

Ток идет от положительной обкладки конденсатора через сопротивление к отрицательной обкладке. Это соответствует переходу избыточных электронов с отрицательной обкладки на положительную, где их недостает. Процесс рам ряда происходит до тех пор, пока потенциалы обеих обкладок не сравняются, т. е. разность потенциалов между ними станет равном нулю: Uc=0 .

На рис. 4, а показан график уменьшения напряжения на конденсаторе при разряде от величины Uc о =100 В до нуля, причем напряжение уменьшается сначала быстро, а затем медленнее.

На рис. 4,б показан график изменения разрядного тока. Сила разрядного тока зависит от величины сопротивления R и по закону Ома i разр = Uc /R


Рис. 4. Графики напряжения и токов при разряде конденсатора

В начальный момент, когда напряжение па обкладках конденсатора наибольшее, сила разрядного тока также наибольшая, а с уменьшением Uc в процессе разряда уменьшается и разрядный ток. При Uc=0 разрядный ток прекращается.

Продолжительность разряда зависит:

1) от емкости конденсатора С

2) от величины сопротивления R , на которое конденсатор разряжается.

Чем больше сопротивление R , тем медленнее будет происходить разряд. Это объясняется тем, что при большом сопротивлении сила разрядного тока невелика и величина заряда на обкладках конденсатора уменьшается медленно.

Это можно показать на графиках разрядного тока одного и того же конденсатора, имеющего емкость 10 мкф и заряженного до напряжения 100 В, при двух разных величинах сопротивления (рис. 5): кривая 1 - при R = 40 Ом, i оразр = Uc о/R = 100/40 = 2,5 А и кривая 2 - при 20 Ом i оразр = 100/20 = 5 А.

Рис. 5. Графики разрядных токов при разных сопротивлениях

Разряд происходит медленнее также тогда, когда емкость конденсатора велика. Получается это потому, что при большей емкости на обкладках конденсатора имеется большее количество электричества (больший заряд) и для стекания заряда потребуется больший промежуток времени. Это наглядно показывают графики разрядных токов для двух конденсаторов раиной емкости, заряженных до одного и того же напряжения 100 В и разряжающихся на сопротивление R =40 Ом (рис. 6 : кривая 1 - для конденсатора емкостью 10 мкф и кривая 2 - для конденсатора емкостью 20 мкф).

Рис. 6. Графики разрядных токов при разных емкостях

Из рассмотренных процессов можно сделать вывод, что в цепи с конденсатором ток проходит только в моменты заряда и разряда, когда напряжение на обкладках меняется.

Объясняется это тем, что при изменении напряжения изменяется величина заряда на обкладках, а для этого требуется перемещение зарядов по цепи, т. е. по цепи должен проходить электрический ток. Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

Энергия конденсатора

В процессе заряда конденсатор накапливает энергию, получая ее от генератора. При разряде конденсатора вся энергия электрического поля переходит в тепловую энергию, т. е. идет на нагрев сопротивления, через которое разряжается конденсатор. Чем больше емкость конденсатора и напряжение на его обкладках, тем больше будет энергия электрического поля конденсатора. Величина энергии, которой обладает конденсатор емкостью С, заряженный до напряжения U, равна: W = W с = СU 2 /2

Пример. Конденсатор С=10 мкф заряжен до напряжении U в = 500 В. Определить энергию, которая выделится в вило тепла на сопротивлении, через которое разряжается конденсатор.

Решение. Пpи разряде вся энергия, запасенная конденсатором, перейдет в тепловую. Поэтому W = W с = СU 2 /2 = (10 х 10 -6 х 500)/2 = 1,25 дж.