Для чего используется канал прямой связи. Каналы связи: виды, характеристики. Модель канала с неопределённой фазой сигнала и аддитивным шумом

BSoD

Используют следующие характеристики канала

  • Эффективно передаваемая полоса частот \Delta F;
  • Динамический диапазон D = 10 \lg {P_{max} \over P_{min}};
  • Помехозащищённость A;
  • Объём V_k.

Помехоустойчивость

Помехозащищённость A = 10 \lg {P_{min~signal} \over P_{noise}}. Где {P_{min~signal} \over P_{noise}} - минимальное отношение сигнал/шум ;

Объём канала

Объём канала V определяется по формуле: V_k=\Delta F_k\cdot T_k\cdot D_k,

где T_k - время, в течение которого канал занят передаваемым сигналом;

Для передачи сигнала по каналу без искажений объём канала V_k должен быть больше либо равен объёму сигнала V_s, то есть V_k \geqslant ~V_s. Простейший случай вписывания объёма сигнала в объём канала - это достижение выполнения неравенств \Delta F_k\geqslant~\Delta F_s, T_k \geqslant~T_s> и \Delta D_k \geqslant~\Delta D_s. Тем не менее, V_k \geqslant ~V_s может выполняться и в других случаях, что даёт возможность добиться требуемых характеристик канала изменением других параметров. Например, с уменьшением диапазона частот можно увеличить полосу пропускания.

Классификация

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на проводные , акустические , оптические , инфракрасные и радиоканалы .

Каналы связи также классифицируют на

  • непрерывные (на входе и выходе канала - непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала - дискретные сигналы),
  • непрерывно-дискретные (на входе канала - непрерывные сигналы, а на выходе - дискретные сигналы),
  • дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе - непрерывные сигналы).

Каналы могут быть линейными и нелинейными, временными и пространственно-временными . Возможна классификация каналов связи по диапазону частот.

Модели канала связи

Канал связи описывается математической моделью , задание которой сводится к определению математических моделей выходного и входного S_2 и S_1, а также установлению связи между ними, характеризующейся оператором L, то есть

S_2= L(S_1).

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал S_2 является детерминированным, то есть

S_2(t)=\gamma ~S_1(t-\tau)

где γ - константа, определяющая коэффициент передачи, τ - постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что \tau является случайной величиной . Например, если входной сигнал S_1(t) является узкополосным , то сигнал S_2(t) на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

S_2(t)=\gamma (cos(\theta) u(t)-sin(\theta) H(u(t)) + n(t),

где учтено, что входной сигнал S_1(t) может быть представлен в виде:

S_1(t)=cos(\theta) u(t)-sin(\theta) H(u(t)),

Модели дискретно-непрерывных каналов связи

Также существуют модели дискретно-непрерывных каналов связи

См. также

Напишите отзыв о статье "Канал связи"

Примечания

Литература

  • Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В.,. Теория электрической связи / Под ред. Д. Д. Кловского. - Учебник для ВУЗов. - М .: Радио и связь, 1999. - 432 с. - ISBN 5-256-01288-6 .
  • Радиотехника / Под ред. Мазора Ю.Л., Мачусского Е.А., Правды В.И.. - Энциклопедия. - М .: ИД «Додэка-XXI», 2002. - С. 488. - 944 с. - ISBN 5-94120-012-9 .
  • Прокис, Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. - М .: Радио и связь, 2000. - 800 с. - ISBN 5-256-01434-X .
  • Скляр Б. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. - 2-е изд. - М .: Вильямс , 2007. - 1104 с. - ISBN 0-13-084788-7 .
  • Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра = Wireless Digital Communications: Modulation and Spread Spectrum Applications. - М .: Радио и связь, 2000. - 552 с. - ISBN 5-256-01444-7 .

Ссылки

  • Канал связи - статья из Большой советской энциклопедии .

Отрывок, характеризующий Канал связи

– Где Анферовы! – сказала баба. – Анферовы еще с утра уехали. А это либо Марьи Николавны, либо Ивановы.
– Он говорит – женщина, а Марья Николавна – барыня, – сказал дворовый человек.
– Да вы знаете ее, зубы длинные, худая, – говорил Пьер.
– И есть Марья Николавна. Они ушли в сад, как тут волки то эти налетели, – сказала баба, указывая на французских солдат.
– О, господи помилуй, – прибавил опять дьякон.
– Вы пройдите вот туда то, они там. Она и есть. Все убивалась, плакала, – сказала опять баба. – Она и есть. Вот сюда то.
Но Пьер не слушал бабу. Он уже несколько секунд, не спуская глаз, смотрел на то, что делалось в нескольких шагах от него. Он смотрел на армянское семейство и двух французских солдат, подошедших к армянам. Один из этих солдат, маленький вертлявый человечек, был одет в синюю шинель, подпоясанную веревкой. На голове его был колпак, и ноги были босые. Другой, который особенно поразил Пьера, был длинный, сутуловатый, белокурый, худой человек с медлительными движениями и идиотическим выражением лица. Этот был одет в фризовый капот, в синие штаны и большие рваные ботфорты. Маленький француз, без сапог, в синей шипели, подойдя к армянам, тотчас же, сказав что то, взялся за ноги старика, и старик тотчас же поспешно стал снимать сапоги. Другой, в капоте, остановился против красавицы армянки и молча, неподвижно, держа руки в карманах, смотрел на нее.
– Возьми, возьми ребенка, – проговорил Пьер, подавая девочку и повелительно и поспешно обращаясь к бабе. – Ты отдай им, отдай! – закричал он почти на бабу, сажая закричавшую девочку на землю, и опять оглянулся на французов и на армянское семейство. Старик уже сидел босой. Маленький француз снял с него последний сапог и похлопывал сапогами один о другой. Старик, всхлипывая, говорил что то, но Пьер только мельком видел это; все внимание его было обращено на француза в капоте, который в это время, медлительно раскачиваясь, подвинулся к молодой женщине и, вынув руки из карманов, взялся за ее шею.
Красавица армянка продолжала сидеть в том же неподвижном положении, с опущенными длинными ресницами, и как будто не видала и не чувствовала того, что делал с нею солдат.
Пока Пьер пробежал те несколько шагов, которые отделяли его от французов, длинный мародер в капоте уж рвал с шеи армянки ожерелье, которое было на ней, и молодая женщина, хватаясь руками за шею, кричала пронзительным голосом.
– Laissez cette femme! [Оставьте эту женщину!] – бешеным голосом прохрипел Пьер, схватывая длинного, сутоловатого солдата за плечи и отбрасывая его. Солдат упал, приподнялся и побежал прочь. Но товарищ его, бросив сапоги, вынул тесак и грозно надвинулся на Пьера.
– Voyons, pas de betises! [Ну, ну! Не дури!] – крикнул он.
Пьер был в том восторге бешенства, в котором он ничего не помнил и в котором силы его удесятерялись. Он бросился на босого француза и, прежде чем тот успел вынуть свой тесак, уже сбил его с ног и молотил по нем кулаками. Послышался одобрительный крик окружавшей толпы, в то же время из за угла показался конный разъезд французских уланов. Уланы рысью подъехали к Пьеру и французу и окружили их. Пьер ничего не помнил из того, что было дальше. Он помнил, что он бил кого то, его били и что под конец он почувствовал, что руки его связаны, что толпа французских солдат стоит вокруг него и обыскивает его платье.
– Il a un poignard, lieutenant, [Поручик, у него кинжал,] – были первые слова, которые понял Пьер.
– Ah, une arme! [А, оружие!] – сказал офицер и обратился к босому солдату, который был взят с Пьером.
– C"est bon, vous direz tout cela au conseil de guerre, [Хорошо, хорошо, на суде все расскажешь,] – сказал офицер. И вслед за тем повернулся к Пьеру: – Parlez vous francais vous? [Говоришь ли по французски?]
Пьер оглядывался вокруг себя налившимися кровью глазами и не отвечал. Вероятно, лицо его показалось очень страшно, потому что офицер что то шепотом сказал, и еще четыре улана отделились от команды и стали по обеим сторонам Пьера.
– Parlez vous francais? – повторил ему вопрос офицер, держась вдали от него. – Faites venir l"interprete. [Позовите переводчика.] – Из за рядов выехал маленький человечек в штатском русском платье. Пьер по одеянию и говору его тотчас же узнал в нем француза одного из московских магазинов.
– Il n"a pas l"air d"un homme du peuple, [Он не похож на простолюдина,] – сказал переводчик, оглядев Пьера.
– Oh, oh! ca m"a bien l"air d"un des incendiaires, – смазал офицер. – Demandez lui ce qu"il est? [О, о! он очень похож на поджигателя. Спросите его, кто он?] – прибавил он.
– Ти кто? – спросил переводчик. – Ти должно отвечать начальство, – сказал он.
– Je ne vous dirai pas qui je suis. Je suis votre prisonnier. Emmenez moi, [Я не скажу вам, кто я. Я ваш пленный. Уводите меня,] – вдруг по французски сказал Пьер.
– Ah, Ah! – проговорил офицер, нахмурившись. – Marchons!
Около улан собралась толпа. Ближе всех к Пьеру стояла рябая баба с девочкою; когда объезд тронулся, она подвинулась вперед.
– Куда же это ведут тебя, голубчик ты мой? – сказала она. – Девочку то, девочку то куда я дену, коли она не ихняя! – говорила баба.
– Qu"est ce qu"elle veut cette femme? [Чего ей нужно?] – спросил офицер.
Пьер был как пьяный. Восторженное состояние его еще усилилось при виде девочки, которую он спас.
– Ce qu"elle dit? – проговорил он. – Elle m"apporte ma fille que je viens de sauver des flammes, – проговорил он. – Adieu! [Чего ей нужно? Она несет дочь мою, которую я спас из огня. Прощай!] – и он, сам не зная, как вырвалась у него эта бесцельная ложь, решительным, торжественным шагом пошел между французами.
Разъезд французов был один из тех, которые были посланы по распоряжению Дюронеля по разным улицам Москвы для пресечения мародерства и в особенности для поимки поджигателей, которые, по общему, в тот день проявившемуся, мнению у французов высших чинов, были причиною пожаров. Объехав несколько улиц, разъезд забрал еще человек пять подозрительных русских, одного лавочника, двух семинаристов, мужика и дворового человека и нескольких мародеров. Но из всех подозрительных людей подозрительнее всех казался Пьер. Когда их всех привели на ночлег в большой дом на Зубовском валу, в котором была учреждена гауптвахта, то Пьера под строгим караулом поместили отдельно.

В Петербурге в это время в высших кругах, с большим жаром чем когда нибудь, шла сложная борьба партий Румянцева, французов, Марии Феодоровны, цесаревича и других, заглушаемая, как всегда, трубением придворных трутней. Но спокойная, роскошная, озабоченная только призраками, отражениями жизни, петербургская жизнь шла по старому; и из за хода этой жизни надо было делать большие усилия, чтобы сознавать опасность и то трудное положение, в котором находился русский народ. Те же были выходы, балы, тот же французский театр, те же интересы дворов, те же интересы службы и интриги. Только в самых высших кругах делались усилия для того, чтобы напоминать трудность настоящего положения. Рассказывалось шепотом о том, как противоположно одна другой поступили, в столь трудных обстоятельствах, обе императрицы. Императрица Мария Феодоровна, озабоченная благосостоянием подведомственных ей богоугодных и воспитательных учреждений, сделала распоряжение об отправке всех институтов в Казань, и вещи этих заведений уже были уложены. Императрица же Елизавета Алексеевна на вопрос о том, какие ей угодно сделать распоряжения, с свойственным ей русским патриотизмом изволила ответить, что о государственных учреждениях она не может делать распоряжений, так как это касается государя; о том же, что лично зависит от нее, она изволила сказать, что она последняя выедет из Петербурга.
У Анны Павловны 26 го августа, в самый день Бородинского сражения, был вечер, цветком которого должно было быть чтение письма преосвященного, написанного при посылке государю образа преподобного угодника Сергия. Письмо это почиталось образцом патриотического духовного красноречия. Прочесть его должен был сам князь Василий, славившийся своим искусством чтения. (Он же читывал и у императрицы.) Искусство чтения считалось в том, чтобы громко, певуче, между отчаянным завыванием и нежным ропотом переливать слова, совершенно независимо от их значения, так что совершенно случайно на одно слово попадало завывание, на другие – ропот. Чтение это, как и все вечера Анны Павловны, имело политическое значение. На этом вечере должно было быть несколько важных лиц, которых надо было устыдить за их поездки во французский театр и воодушевить к патриотическому настроению. Уже довольно много собралось народа, но Анна Павловна еще не видела в гостиной всех тех, кого нужно было, и потому, не приступая еще к чтению, заводила общие разговоры.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

Канал связи - это система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле, представляет только физическую среду распространения сигналов, например, физическую линию связи.

От источника сообщения (говорящего человека) сообщение (речь) поступает на вход передающего устройства (микрофон). Передающее устройство преобразует сообщение в сигналы, которые поступают на вход канала связи. На выходе канала связи приемное устройство (телефонный капсюль) по принятому сигналу воспроизводит переданное сообщение, последнее воспринимается приемником сообщения (слушающим человеком). Передатчик, канал связи, и приёмник формируют систему передачи информации или систему связи.

По назначению системы связи разграничивают каналы телесигнализации, телеизмерения, телеуправления (телекомандные), телеграфные, телефонные, звукового вещания, факсимильные, телевизионного вещания и т.д.

Каналы связи могут иметь много форм, включая каналы отвечающие требованиям хранения данных, которые могут передавать сообщения, как только возникнет ситуация.

Примеры каналов связи включают:

  • · Соединение между инициирующим и оконечным узлами цепи
  • · Буфер, на который сообщения могут быть положены и получены
  • · Выделенный канал, обеспечиваемый передающей средой либо физическим разделением, таким как многопарный кабель, либо электрическим разделением, таким как частотное уплотнение каналов связи или мультиплексирование с временным разделением каналов
  • · Путь для перемещения электрического или электромагнитного сигнала обычно отличается от других параллельных путей
  • · Часть записывающей среды, такой как дорожка или группа дорожек, что позволяет производить чтение или запись станции или устройства звуковоспроизведения
  • · В коммуникационных системах, часть, что соединяет источник данных и приемник данных
  • · Специфическая радиочастота, пара или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением
  • · Пространство в Internet Relay Chat (IRC) сети, в которой участники могут связываться один с другим

Все эти коммуникационные каналы разделяют то свойство, что они переносят информацию, которая переносится через канал сигналом.

Примером канала связи может служить специфическая радиочастота, пара частот или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением. Морское УКВ радио использует некие 88 каналов в УКВ диапазоне для двунаправленной частотно-модулированной голосовой связи. Канал 16, для примера, означает частоту 156,800 МГц.

Телевизионные каналы расположены на частоте, определяющей физической величиной которого являются мегагерцы (МГц). Каждый канал имеет ширину 6 Мгц. Кроме этих физических каналов телевидение также имеет виртуальные каналы. Wi-Fi (беспроводная сеть) представялет собой канал связи, состоящий из нелицензированных каналов 1-13 в диапазоне от 2412 МГц до 2484 МГц с шагом в 5 МГц.

1. Канал связи

Канал связи -- система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

2 Канал связи включает следующие компоненты:

1) передающее устройство;

2) приемное устройство;

3) среду передачи различной физической природы

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет. канал связь удаленный получатель

Т.е. это (канал) -- техническое устройство (техника+среда).

3. Характеристики (параметры) каналов связи

1. Передаточная функция канала: представляется в виде амплитудно-частотной характеристики (АЧХ) и показывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

2. Полоса пропускания: является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.


3. Затухание: определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать

затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле:

Где Рвых - мощность сигнала на выходе канала, Рвх - мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

4. Скорость передачи: характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду -- бит/с, а также производных единицах: Кбит/c, Мбит/c, Гбит/с. Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.

5. Помехоустойчивость канала: характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры) и внешние (они многообразны и зависят от среды передачи). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.

6. Динамический диапазон: логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.

7. Помехозащищенность: это помехозащищенность, т.е. помехозащищенность.

Если у вашей компании возникла необходимость:

  • соединить два или несколько офисов в единую корпоративную сеть;
  • подключить удаленный склад к офисной АТС или корпоративному серверу;
  • подключить любой объект к корпоративной сети и т.п.,
специалисты компании ИТЕРАНЕТ помогут Вам решить эти задачи, организовав каналы связи или каналы передачи данных между нужными объектами. В зависимости от месторасположения ваших объектов и по результатам технического обследования наши специалисты предложат вам проложить "витую пару" , организовать радиоканал или (ВОЛС).

Когда необходимо объединить в одну телефонную и корпоративную сеть два офиса, находящихся в пределах одного здания или одного территориального объекта, чаще всего используют "витую пару" . Это наиболее удобный и простой способ организации проводного канала связи на небольших расстояниях.

Радиоканал или волоконно-оптическую линию связи (ВОЛС) используют при необходимости объединить в единую корпоративную сеть территориально-распределенные объекты.

Главные преимущества при построении радиоканала - это короткий срок его организации, а также меньшие капиталовложения по сравнению, например, с организацией ВОЛС. При этом важным условием для организации радиоканала является наличие прямой видимости между объединяемыми объектами или между объектом и ближайшей базовой станцией компании ИТЕРАНЕТ (в зависимости от схемы построения канала связи).

Несомненным преимуществом является ее высокая надежность, хотя и радиотехнологии сегодня достигли такого развития, что говорить о ненадежности радиоканала стало неактуально. При этом срок построения и затраты на организацию ВОЛС выше, чем для организации радиоканала.

Что делать, если канал связи Вам необходим в ближайшее время, но и требования к надежности высоки?
Все очень просто. В первую очередь компания ИТЕРАНЕТ может построить радиоканал и тем самым решить первую часть задачи - "срочность" организации канала связи. Затем специалисты ИТЕРАНЕТ приступят к реализации второй части задачи - построение надежной волоконно-оптической линии связи . По окончанию работ по строительству ВОЛС целесообразно использовать радиоканал в режиме резервного, тем самым повысив в целом отказоустойчивость организованного между объектами канала связи.

Слаботочные системы

О каналах связи

Канал связи - канал, организованный на базе определенного проводника, и используемый для передачи информации.

Каналы связи образуется различным образом.

Они могут быть как физическими проводными каналами – образуемыми кабелями связи, так и волновыми каналами – формируемыми для организации в какой-либо среде (например, эфире) различных видов радиосвязи с помощью антенн и выделенной полосы частот. При этом электрические и оптические каналы связи (образуемые соответствующими сигналами) подразделяются на: проводные и беспроводные (радио-, инфракрасные и другие) каналы. Таким образом, оптический, как и электрический сигнал может распространяться, по проводам, в эфире и других средах.

В телефонной сети после набора номера, канал образуется на время соединения, например, двух абонентов и проведения между ними сеанса голосовой связи. В проводных системах передачи данных канал формируется путём применения оборудования уплотнения, позволяющего одновременно продолжительно или кратковременно передавать по линии связи данные большого (тысяч) количества источников. Такие линии состоят из одной или нескольких пар проводов (кабелей) и обеспечивают передачу данных на различные расстояния. Термин «канал » в радиосвязи означает среду передачи данных, организованную для одного или нескольких, одновременно проводимых сеансов связи. Во втором случае, например, может использоваться частотное разделение каналов.

Также, как и средства связи, линии или каналы связи делятся на: аналоговые, цифровые, а также аналогово-цифровые.

Цифровые коммуникации (каналы связи) надёжнее, чем аналоговые. Они обеспечивают высокое качество передачи информации, позволяют внедрять механизмы, гарантирующие целостность каналов, защиту данных и применение других сервисов. Для передачи аналоговой информации по цифровому каналу, она преобразуется в цифровую форму.

В конце 1980-х годов появилась цифровая сеть с интеграцией услуг ( IntegratedServicedDigitalNetwork – ISDN ). Предполагается, что она станет глобальной цифровой магистралью, соединяющей офисные и домашние компьютеры, обеспечивая им высокоскоростную передачу данных (до 2 Мбит/с и более). Стандартными четырёхпроводными абонентскими устройствами ISDN могут быть: телефон, факсимильный аппарат, устройства передачи данных, оборудование телеконференций и другие. Конкуренцию им могут составить современные технологии, применяемые в сетях кабельного телевидения.

По пропускной способности каналы связи делятся на:

  • низкоскоростные (телеграфные, скорость передачи информации от 50 до 200 бод/с). Напомним, что 1 бод = 1 бит/сек,
  • среднескоростные (аналоговые телефонные, от 300–9600 до 56000 бит/с для ЭВМ),
  • высокоскоростные или широкополосные (скорость передачи информации свыше 56000 бит/с). Так как, 1 байт равен 8 битам, можно легко осуществить пересчёт, например, 56000 бит/с = 7 Кб/с.

В зависимости от возможностей организации направлений передачи информации каналы связи делятся на:

¨симплексные , позволяющие осуществлять передачу информации только в одном направлении;
¨полудуплексные , обеспечивающие попеременную передачу информации в прямом и обратном направлениях;
¨дуплексные или полнодуплексные, допускающие передачу информации одновременно в прямом и обратном направлениях.

Проводные каналы связи представляют группу параллельных или скрученных (витая пара) медных проводов, коаксиальные кабели и волоконно-оптические линии связи (ВОЛС). В проводных каналах используют следующие виды кабелей:

1. Витая пара (скорость передачи данных – 1 Мбит/сек).
2. Коаксиальный кабель (типа TV, тонкий и толстый) – скорость передачи данных – 15 Мбит/сек.
3. Оптоволоконный кабель (скорость передачи данных – 400 Мбит/сек).

1. Витая пара (англ. «twistedpair») – изолированные проводники, попарно свитые между собой для уменьшения наводок между проводниками и парами. Выделяют пять категорий витых пар. Первая и вторая категории используются при низкоскоростной передаче данных, причём первая – стандартный телефонный абонентский провод. Третью, четвёртую и пятую категории применяют при скоростях передачи до 16, 25 и 155 Мбит/с соответственно, причём третья (TokenRing) и четвёртая (Ethernet) для частоты до 10 МГц, а пятая – до 100 МГц. Наибольшее распространение получила третья категория. Ориентируясь на перспективные решения, связанные с потребностью увеличивать пропускную способность сети, следует использовать оборудование пятой категории, обеспечивающее передачу данных по обычным телефонным линиям и ЛВС со скоростью до 1 Мбит/с.

Такие провода содержат две или четыре пары и могут иметь экран из алюминиевой фольги. В последнем случае они называются – экранированная витая пара (англ. «shieldedtwistedpair», STP). Неэкранированный провода называют UTP (англ. «unshieldedtwistedpair»).

2. Коаксиальный кабель – медный проводник (или алюминиевый провод, покрытый медью) внутри цилиндрической экранирующей защитной оболочки, свитой из тонких медных проводников, изолированной от проводника диэлектриком (заполняющим пространство между ними). От стандартного телевизионного кабеля он отличается волновым сопротивлением. У первого 75 Ом, а у второго – 50 Ом. По такому кабелю скорость передачи данных достигает 300 Мбит/с. Различают тонкий (Ø 0,2 дюйма/5 мм) и толстый (Ø 0,4 дюйма/10 мм) коаксиальный кабель. В ЛВС обычно применяют тонкий кабель, так как его легче прокладывать и монтировать. Значительная стоимость и сложность прокладки ограничивают его использование в сетях передачи данных.

Сети кабельного телевидения (CATV) строились с использованием коаксиального кабеля, аналоговый сигнал по которому передавался на расстояние до нескольких десятков км. Типичная сеть кабельного TV имеет древовидную структуру, где головной узел получает сигналы со спутника связи или по ВОЛС. Ныне появляются такие сети, в которых используются коаксиальный и волоконно-оптический кабель, позволяющий обслуживать большие территории и передавать бóльшие объёмы информации, обеспечивая высокое качество сигналов даже без применения повторителей. Такие сети называются гибридными ( HFC).

При симметричной архитектуре прямой и обратный сигналы передаются по одному кабелю в различных диапазонах частот с разными скоростями (обратный медленнее).

В любом случае скорость загрузки данных в таких сетях многократно выше (до 1000 раз), чем в стандартных телефонных линиях. Данные, загружаемые по телефонной линии в течение 20 мин., могут быть загружены в кабельной сети за 1–2 с.

В организациях с собственными кабельными сетями предпочтительнее использовать симметричные схемы, так как в этом случае скорость прямой и обратной передачи одинакова и составляет примерно 10 Мбит/с. Ныне выпускаются модемы, способные передавать информацию со скоростью до 30 Мбит/с и более.

Количество проводов, используемых для домашних ПК и электроники, постоянно растёт. По оценке специалистов в 150-метровой квартире прокладывается до 3 км различных кабелей. В 1990-е годы решить эту проблему предложила британская компания UnitedUtilities, разработав технологию Digital Power Line (DPL). Она предложила использовать обычные силовые электрические сети в качестве сетей или среды высокоскоростной передаче данных, осуществив передачу голоса и пакетов данных по простым электрическим сетям напряжением 120/220 В.

Наибольших успехов в данной области добилась израильская компания Main.net, разработавшая технологию Powerline Communications (PLC), обеспечивающую передачу данных и голоса (VoIP) со скоростью от 2 до 10 Мбит/с. При этом высокоскоростной поток данных разбивался на несколько низкоскоростных, передававшихся на отдельных поднесущих частотах с последующим их объединением в один сигнал (частотное разделение сигнала).

PLC-технология подходит для низкоскоростной передачи данных (домашняя автоматика, бытовые устройства и т.п.), доступа в Интернет со скоростью менее 1 Мбит/с, для приложений, требующих высокоскоростного соединения (видео по запросу, видеоконференц-связи и т.п.). При этом питающие здание электрические кабели служат «последней милей», а электропроводка внутри здания – «последним дюймом» для передачи данных.

При небольшом расстоянии между промежуточной приемопередающей точкой (трансформаторной подстанцией) и зданием скорость передачи доходи до 4,5 Мбит/с. PLC-технология может использоваться при создании локальной сети в небольшом офисе или жилом доме, так как минимальная скорость передачи позволяет покрывать расстояние до 200–300 м. Такая технология обеспечивает реализацию услуг дистанционного мониторинга, охраны жилища, управления его режимами, ресурсами и т.п., составляющих концепцию интеллектуального дома. Ожидается, что с её помощью станет возможным организовать прямой доступ в Интернет.

3. Оптоволоконный кабель состоит из кварцевого сердечника диаметром 10 мкм (микрон), окружённого отражающей защитной оболочкой с внешним диаметром 125–200 мкм. Передача информации осуществляется преобразованием электрических сигналов в световые с помощью, например, светодиода. Кодирование информации производится изменением интенсивности светового потока. При передаче информации отражённый от стенок волокна луч приходит на приёмный конец с минимальным затуханием. Такой кабель обеспечивает полную защиту от воздействия внешних электромагнитных полей и высокую скорость передачи данных (до 1000 Мбит/с). Он позволяет одновременно организовать работу нескольких сотен тысяч телефонных, нескольких тысяч видеотелефонных и около тысячи телевизионных каналов. Волоконно-оптические кабели сложны для несанкционированного подключения, пожаробезопасны, но достаточно дороги и требуют устройств преобразования световых сигналов в электрические (лазеры) и наоборот. Такие кабели используются, как правило, при прокладке магистральных линий связи (ВОЛС). Уникальные свойства кабеля позволяют использовать его для организации сетей Интернет.

Каналы связи бывают коммутируемые (создаются лишь на время проведения сеанса передачи информации, например, телефонные) и некоммутируемые (выделяются абоненту на продолжительный период времени и не зависят от времени передачи данных – выделенные).

Беспроводные каналы связи

Выделяют три основных типа беспроводных сетей :

1) радиосети свободного радиочастотного диапазона (сигнал передаётся сразу по нескольким частотам);
2) микроволновые (дальняя и спутниковая связь),
3) инфракрасные (лазерные, передаваемые когерентными пучками света).
Последние являются высокопроизводительными (высокоскоростными) системами. Их широкое применение порой ограничивается из-за невысокой устойчивости к таким природным явлениям как дождь и туман. Предел дальности такой связи равен 5 км, устойчивой связи – 1–1,5 км.

По способу организации используются системы одночастотной, двухчастотной и многочастотной радиосвязи. Обычно одночастотная связь применяется в режиме радиальной радиосвязи, то есть предоставляет возможность всем абонентам сети слышать вызывающего абонента и отвечать ему (симплексный режим ). Для организации прямой связи между двумя удалёнными абонентами используется также одноканальная двухчастотная (полудуплексная ) радиосвязь – двухчастотный симплекс , то есть на одной частоте осуществляется передача, а на другой – приём сообщений.

Многоканальные системы полудуплексной радиосвязи формируются на основе транковых и радиорелейных систем.

Транкинговая (англ. «trunking») или транковая (англ. « trunked») связь – (ствол, канал связи) означает соединительную линию, организуемую между двумя станциями или узлами сети и предназначенную для организации передачи информации группы пользователей в одном радиостволе (до 50 и более абонентов) с радиусом действия от 20 до 35, 70 и 100 км. Это профессиональная мобильная радиосвязь (ПМР) с автоматическим распределением ограниченного количества свободных каналов среди большого числа подвижных абонентов, позволяющая эффективно использовать частотные каналы, существенно повышая пропускную способность системы.

Радиорелейная связь образуется путём строительства протяжённых линий с приёмо-передающими станциями и антеннами. Она обеспечивает узкополосную высокочастотную передачу данных на расстоянии между ближайшими антеннами в пределах прямой видимости (примерно 50 км). Скорость передачи данных в такой сети достигает 155 Мбит/с.

Рассмотрим особенности видов связи.

Телефонная связь – самый распространённый вид оперативно-управленческой связи. Официально она появилась 14 февраля 1876 года, когда А. Белл (Александр Грейам, 1847–1922, США) зарегистрировал изобретение первого телефонного аппарата. Спустя два часа другой изобретатель Иоайш Грей подал заявку на аналогичный аппарат. Первая телефонная станция появилась также в США (Нью-Хейвен) в 1878 году.

Принцип телефонной связи заключается в следующем. Телефонный микрофон, в который говорит абонент, преобразует колебания звука в аналоговый электрический сигнал. Сигнал передаётся по линиям связи на телефонный аппарат абонента, принимающего голосовую информацию, с помощью индуктивных катушек и мембраны, расположенных в телефонной трубке. Этот сигнал преобразуется в колебания звука. Диапазон передаваемых частот по отечественным телефонным каналам – 300 Гц–3,4 кГц.

Телефонная связь представляет разветвлённую структуру, объединяющую аппараты абонентов с ближайшими автоматическими телефонными станциями (АТС), которые соединяются между собой в единую телефонную сеть . Любой аппарат абонента соединяется абонентской линией с ближайшей АТС, удаленной от него на расстояние до 10 км. На телефонной станции производится подключение телефонных каналов абонентских и соединительных линий (между АТС) на время телефонных переговоров и их разъединение по окончании переговоров.

Широкое применение в организациях находят офисные телефонные системы (УАТС, ОАТС, ЭУАТС и др.).

Спутниковая связь образуется между специальными наземными станциями спутниковой связи и спутником с антеннами и приёмо-передающим оборудованием. Она позволяет охватывать территории со слабо развитой инфраструктурой связи, расширить сферу и набор услуг, в т.ч. мультимедийных, радионавигационных и др. Принцип работы систем спутниковой связи (ССС) заключается в том, что от абонента сигнал поступает (в т.ч. по радиоканалу), как правило, на ближайшую наземную станцию, которая переадресовывает его на станцию спутниковой связи. Оттуда этот сигнал с помощью мощной антенны отправляется на спутник. К абоненту сигнал поступает аналогично, в обратном порядке.

Спутники располагаются на одной из трёх орбит.

Спутник, расположенный на геостационарной орбите (GeostationaryEarthOrbit, GEO), находится на высоте 36 тыс. км и является неподвижным для наблюдателя. Он способен охватывать значительные области (территории) планеты.
- Средние орбиты (MeanEarthOrbit, MEO) обитания спутников характеризуются высотой 5–15 тыс. км.
- На низких орбитах (LowEarthOrbit, LEO) высота размещения спутников не превышает 1,5 тыс. км. В этом случае они охватывают небольшие, локальные территории.

Станции спутниковой связи (ССС) делятся на: стационарные, переносные (перевозимые ) и портативные .

Они обеспечивают:
1) телевидение и радиовещание для коллективных и индивидуальных пользователей;
2) национальные и цифровые телефонные сети связи;
3) поддержку системы коммерческой связи SMS (SatelliteMultiservicesSystem) для высокоскоростной передачи данных, проведения видеоконференций и межкомпьютерного обмена информацией;
4) предоставление связи наземным подвижным объектам и др.

Персональная спутниковая радиосвязь или спутниковая индивидуальная связь ориентирована на использовании систем персональной спутниковой связи (СПСС). Портативные станции спутниковой связи вместе с антенной умещаются в кейсе и имеют массу до 8,5 кг.

Современные средства связи всё больше ориентируются на обеспечение передачи различных видов данных. Для этого создаются сети передачи данных, использующие специальные каналы связи и методы передачи данных, предоставляющие пользователям различные виды передачи данных.