Вероятность попадания нормально распределенной случайной величины в заданный интервал. Вероятность попадания в заданный интервал нормальной случайной величины Вероятность случайной величины попасть заданный интервал

Windows 8

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины , подчиненной нормальному закону с параметрами , на участок от до . Для вычисления этой вероятности воспользуемся общей формулой

где - функция распределения величины .

Найдем функцию распределения случайной величины , распределенной по нормальному закону с параметрами . Плотность распределения величины равна:

. (6.3.2)

Отсюда находим функцию распределения

. (6.3.3)

Сделаем в интеграле (6.3.3) замену переменной

и приведем его к виду:

(6.3.4)

Интеграл (6.3.4) не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или (так называемый интеграл вероятностей), для которого составлены таблицы. Существует много разновидностей таких функций, например:

;

и т.д. Какой из этих функций пользоваться – вопрос вкуса. Мы выберем в качестве такой функции

. (6.3.5)

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной величины с параметрами .

Условимся называть функцию нормальной функцией распределения. В приложении (табл. 1) приведены таблицы значений функции .

Выразим функцию распределения (6.3.3) величины с параметрами и через нормальную функцию распределения . Очевидно,

. (6.3.6)

Теперь найдем вероятность попадания случайной величины на участок от до . Согласно формуле (6.3.1)

Таким образом, мы выразили вероятность попадания на участок случайной величины , распределенной по нормальному закону с любыми параметрами, через стандартную функцию распределения , соответствующую простейшему нормальному закону с параметрами 0,1. Заметим, что аргументы функции в формуле (6.3.7) имеют очень простой смысл: есть расстояние от правого конца участка до центра рассеивания, выраженное в средних квадратических отклонениях; - такое же расстояние для левого конца участка, причем это расстояние считается положительным, если конец расположен справа от центра рассеивания, и отрицательным, если слева.

Как и всякая функция распределения, функция обладает свойствами:

3. - неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами относительно начала координат следует, что

Пользуясь этим свойством, собственно говоря, можно было бы ограничить таблицы функции только положительными значениями аргумента, но, чтобы избежать лишней операции (вычитание из единицы), в таблице 1 приложения приводятся значения как для положительных, так и для отрицательных аргументов.

На практике часто встречается задача вычисления вероятности попадания нормально распределенной случайной величины на участок, симметричный относительно центра рассеивания . Рассмотрим такой участок длины (рис. 6.3.1). Вычислим вероятность попадания на этот участок по формуле (6.3.7):

Учитывая свойство (6.3.8) функции и придавая левой части формулы (6.3.9) более компактный вид, получим формулу для вероятности попадания случайной величины, распределенной по нормальному закону на участок, симметричный относительно центра рассеивания:

. (6.3.10)

Решим следующую задачу. Отложим от центра рассеивания последовательные отрезки длиной (рис. 6.3.2) и вычислим вероятность попадания случайной величины в каждый из них. Так как кривая нормального закона симметрична, достаточно отложить такие отрезки только в одну сторону.

По формуле (6.3.7) находим:

(6.3.11)

Как видно из этих данных, вероятности попадания на каждый из следующих отрезков (пятый, шестой и т.д.) с точностью до 0,001 равны нулю.

Округляя вероятности попадания в отрезки до 0,01 (до 1%), получим три числа, которые легко запомнить:

0,34; 0,14; 0,02.

Сумма этих трех значений равна 0,5. Это значит, что для нормально распределенной случайной величины все рассеивания (с точностью до долей процента) укладывается на участке .

Это позволяет, зная среднее квадратическое отклонение и математическое ожидание случайной величины, ориентировочно указать интервал её практически возможных значений. Такой способ оценки диапазона возможных значений случайной величины известен в математической статистике под названием «правило трех сигма». Из правила трех сигма вытекает также ориентировочный способ определения среднего квадратического отклонения случайной величины: берут максимальное практически возможное отклонение от среднего и делят его на три. Разумеется, этот грубый прием может быть рекомендован, только если нет других, более точных способов определения .

Пример 1. Случайная величина , распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния. При измерении допускается систематическая ошибка в сторону завышения на 1,2 (м); среднее квадратическое отклонения ошибки измерения равно 0,8 (м). Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6 (м).

Решение. Ошибка измерения есть случайная величина , подчиненная нормальному закону с параметрами и . Нужно найти вероятность попадания этой величины на участок от до . По формуле (6.3.7) имеем:

Пользуясь таблицами функции (приложение, табл. 1), найдем:

; ,

Пример 2. Найти ту же вероятность, что и в предыдущем примере, но при условии, что систематической ошибки нет.

Решение. По формуле (6.3.10), полагая , найдем:

.

Пример 3. По цели, имеющей вид полосы (автострада), ширина которой равна 20 м, ведется стрельба в направлении, перпендикулярном автостраде. Прицеливание ведется по средней линии автострады. Среднее квадратическое отклонение в направлении стрельбы равно м. Имеется систематическая ошибка в направлении стрельбы: недолет 3 м. Найти вероятность попадания в автостраду при одном выстреле.

Найдем функцию распределения случайной величины Х , подчиненной нормальному закону распределения:

сделаем в интеграле замену и приведем его к виду:

.

Интеграл не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или . Выразим функцию через функцию Лапласа Ф(х):

.

Вероятность попадания случайной величины Х на участок (α, β) выражается формулой:

.

С помощью последней формулы можно оценить вероятность отклонения нормальной случайной величины от своего математического ожидания на заранее заданную сколь угодно малую положительную величину ε:

.

Пусть , тогда и . При t =3 получим , т.е. событие, заключающееся в том, что отклонение нормально распределенной случайной величины от математического ожидания, будет меньше , является практически достоверным.

В этом состоит правило трех сигм : если случайная величина распределена нормально, то абсолютная величина отклонения ее значений от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Задача. Пусть диаметр изготовляемой цехом детали является случайной величиной, распределенной нормально, m = 4,5 см, см. Найти вероятность того, что размер диаметра наудачу взятой детали отличается от ее математического ожидания не более, чем на 1 мм.

Решение . Данная задача характеризуется следующими значениями параметров, определяющих искомую вероятность: , , Ф(0,2)=0,0793,

Контрольные вопросы

1. Какое распределение вероятностей называется равномерным?

2. Какой вид имеет функция распределения случайной величины, равномерно распределенной на отрезке [а; b ]?

3. Как вычислить вероятность попадания значений равномерно распределенной случайной величины в заданный промежуток?

4. Как определяется показательное распределение случайной величины?

5. Какой вид имеет функция распределения случайной величины, распределенной по показательному закону?

6. Какое распределение вероятностей называется нормальным?

7. Какими свойствами обладает плотность нормального распределения? Как влияют параметры нормального распределения на вид графика плотности нормального распределения?

8. Как вычислить вероятность попадания значений нормально распределенной случайной величины в заданный промежуток?

9. Как вычислить вероятность отклонения значений нормально распределенной случайной величины от ее математического ожидания?

10. Сформулируйте правило «трех сигма»?

11. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по равномерному закону на отрезке [а; b ]?

12. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по показательному закону с параметром λ?

13. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по нормальному закону с параметрами m и ?

Контрольные задания

1. Случайная величина Х распределена равномерно на отрезке [−3, 5]. Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятности и . Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение Х .

2. Автобусы маршрута №21 идут регулярно с интервалом 10 мин. Пассажир выходит на остановку в случайный момент времени. Рассматривается случайная величина Х − время ожидания пассажиром автобуса (в мин.). Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятность того, что пассажиру придется ждать автобуса не более пяти минут. Найти среднее время ожидания автобуса и дисперсию времени ожидания автобуса.

3. Установлено, что время ремонта видеомагнитофона (в днях) есть случайная величина Х , распределенная по показательному закону. Среднее значение времени ремонта видеомагнитофона равно 10 дням. Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятность того, что на ремонт видеомагнитофона потребуется не менее 11 дней.

4. Изобразите графики плотности и функции распределения случайной величины Х , распределенной по нормальному закону с параметрами m = = − 2 и = 0,2.

Страница 1
Тест 7
Нормальный закон распределения. Вероятность попадания нормально распределенной случайной величины (НРСВ) в заданный интервал.
Основные сведения из теории.

Нормальным называют распределение вероятностей случайной величины (СВ) X , если плотность распределения определяется уравнением:

Где a – математическое ожидание СВ X ; - среднее квадратическое отклонение.

График
симметричен относительно вертикальной прямой
. Чем больше , тем больше размах кривой
. Значения функции
имеются в таблицах.

Вероятность того, что СВ X примет значение, принадлежащее интервалу
:
, где
- функция Лапласа. Функция
определяется по таблицам.

При =0 кривая
симметрична относительно оси ОУ- это стандартное (или нормированное) нормальное распределение.

Так как функция плотности вероятности НРСВ симметрична относительно математического ожидания, то можно простроить так называемую шкалу рассеивания:

Видно, что с вероятностью 0,9973 можно утверждать, что НРСВ примет значения в пределах интервала
. Это утверждение получило в теории вероятностей название “правила Трех сигм”.


1. Сравните величины для двух кривых НРСВ.

1)
2)


2. Непрерывная случайная величина Х задана плотностью распределения вероятностей
. Тогда математическое ожидание этой нормально распределенной случайной величины равно:

1) 3 2) 18 3) 4 4)

3. НРСВ Х задана плотностью распределения:
.

Математическое ожидание и дисперсия этой СВ равны:

1) =1 2) =5 3) =5

=25 =1 =25
4. Правило трех сигм означает, что:

1) Вероятность попадания СВ в интервал
, то есть близка к единице;

2) НРСВ не может выйти за пределы
;

3) График плотности НРСВ симметричен относительно математического ожидания

5. СВ Х распределена нормально с математическим ожиданием, равным 5 и СКО, равным 2 единицы. Выражение для плотности распределения этой НРСВ имеет вид:

1)

2)

3)

6. Математическое ожидание и СКО НРСВ Х равны 10 и 2. Вероятность того, что в результате испытания СВ Х примет значение, заключенное в интервале , составляет:

1) 0,1915 2) 0,3830 3) 0,6211


7. Деталь считается годной, если отклонение Х действительного размера от размера на чертеже по абсолютной величине меньше, чем 0,7 мм. Отклонения Х от размера на чертеже являются НРСВ со значением =0,4 мм. Изготовлено 100 деталей; из них годных будет:

1) 92 2) 64 3) 71


8. Математическое ожидание и СКО НРСВ Х равны 10 и 2. Вероятность того, что в результате испытания СВ Х примет значение, заключенное в интервале составляет:

1) 0,1359 2) 0,8641 3) 0,432


9. Погрешность Х изготовления детали является НРСВ со значением a =10 и =0,1. Тогда с вероятностью 0,9973 интервал размеров деталей, симметричный относительно a =10 будет:

1) 9,7; 10,3 2) 9,8; 10,2 3) 9,9; 10,1

10. Взвешивают все изделия без систематических ошибок. Случайные ошибки Х измерения подчинены нормальному закону со значением =10 г. Вероятность того, что взвешивание будет произведено с ошибкой не превосходящей по абсолютной величине 15 г составляет:

1) 0,8664 2) 0,1336 3) 0,4332


11. НРСВ Х имеет математическое ожидание a =10 и СКО =5. С вероятностью 0,9973 величина Х попадет в интервал:

1) (5; 15) 2) (0; 20) 3) (-5; 25)


12. НРСВ Х имеет математическое ожидание a =10. Известно, что вероятность попадания Х в интервал равна 0,3. Тогда вероятность попадания СВ Х в интервал будет равна:

1) 0,1 2) 0,2 3) 0,3


13. НРСВ Х имеет математическое ожидание a =25. Вероятность попадания Х в интервал равна 0,2. Тогда вероятность попадания Х в интервал будет равна:

1) 0,1 2) 0,2 3) 0,3


14. Температура в помещении поддерживается нагревателем и имеет нормальное распределение с
и
. Вероятность того, что температура в этом помещении будет в пределах от
до
составляет:

1) 0,95 2) 0,83 3) 0,67


15. Для стандартизованного нормального распределения величина равна:

1) 1 2) 2 3)

16. Эмпирическое нормальное распределение образуется в том случае, когда:

1) действует большое число независимых случайных причин, имеющих примерно одинаковый статистический вес;

2) действует большое число сильно зависимых между собой случайных величин;

3) объем выборки небольшой.


1

Значение определяет размах кривой плотности распределения относительно математического ожидания. Для кривой 2 размах больше, то есть


(2)

2

В соответствии с уравнением для плотности НРСВ математическое ожидание a =4.

(3)

3

В соответствии с уравнением для плотности НРСВ имеем: =1; =5, то есть
.

(1)

4

Верным является ответ (1).

(1)

5

Выражение для плотности распределении НРСВ имеет вид:
. По условию: =2; a =5, то есть верным является ответ (1).

(1)

6

По условию =10; =2. Интервал равен . Тогда:
;
.

По таблицам функции Лапласа:
; . Тогда искомая вероятность:



(2)

7

По условию: =0;
;=0,4. Значит интервал будет [-0,7; 0,7].


;
.

;

То есть из 100 деталей наиболее вероятно будет годных 92 штуки.


(1)



8

По условию: =10 и =2. Интервал равен . Тогда:
;
. По таблицам функции Лапласа:
;
;

(1)

9

В интервал, симметричный относительно математического ожидания a =10 с вероятностью 0,9973, попадают все детали, имеющие размеры, равные
, то есть ; . Таким образом:

(1)

10

По условию
,то есть =0, а интервал будет [-15;15]

Тогда:
;
.

Где - интегральная функция Лапласа , задается таблично.

Из свойств определенного интеграла Ф(-х )= - Ф(х ), т.е. функция Ф(х ) – нечетная.

Отсюда выводятся следующие (производные) формулы:

Полагая: а) d=s

Правило трех сигм (3s): практически достоверно, что при однократном испытании, отклонение нормально распределенной случайной величины от ее математического ожидания не превышает утроенного средне-квадратического отклонения.

Задача : Предполагается, что масса вылавливаемых в пруду зеркальных карпов есть случайная величина Х , имеющая нормальное распределение с математическим ожиданием a =375 г. и средним квадратическим отклонением s = 25 г. Требуется определить:

А) Вероятность, что масса случайно выловленного карпа окажется не менее a=300 г. и не более b=425 г.

Б) Вероятность, что отклонение указанной массы от среднего значения (математического ожидания) по абсолютной величине будет меньше d= 40 г.

В) По правилу трех сигм найти минимальную и максимальную границы предполагаемой массы зеркальных карпов.

Решение :

А)

Вывод : Примерно 98% карпов, плавающих в пруду, имеют массу не менее 300 г. и не более 425 г.

Б)

Вывод : Примерно 89% имеют массу от a-d = 375- 40 = 335 г. до a +d = 375 + 40 = 415 г.

В) По правилу трех сигм:

Вывод : Масса практически всех карпов (примерно 100%) заключена в интервале от 300 до 450 грамм.

Задачи для самостоятельного решения

1. Стрелок поражает мишень с вероятностью 0,8. Какова вероятность, что при трех выстрелах мишень будет поражена ровно два раза? Хотя бы два раза?

2. В семье четверо детей. Принимая рождения мальчика и девочки как равновероятные события, оценить вероятность, что в семье две девочки. Три девочки и один мальчик. Составить закон распределения для случайной величины Х , соответствующей возможному количеству девочек в семье. Рассчитать характеристики: М (Х ), s.

3. Игральную кость подбрасывают три раза. Какова вероятность, что «6» выпадет один раз? Не более одного раза?

4. Случайная величина Х равномерно распределена на интервале . Какова вероятность попадания случайной величины Х на интервал ?



5. Предполагается, что рост людей (для определенности – взрослых, мужчин), проживающих в некоторой местности, подчиняется нормальному закону распределения с математическим ожиданием а =170 см и среднеквадратическим отклонением s=5 см. Какова вероятность, что рост случайно выбранного человека:

А) окажется не более 180 см и не менее 165 см?

Б) отклоняется от среднего по абсолютной величине не более чем на 10 см?

В) по правилу «трех сигм» оценить минимально и максимально возможный рост человека.

Контрольные вопросы

1. Как записывается формула Бернулли? Когда она применяется?

2. Что представляет собой биномиальный закон распределения?

3. Какая случайная величина называется равномерно распределенной?

4. Какой вид имеют интегральная и дифференциальная функции распределения для случайной величины, равномерно распределенной на отрезке [a , b ]?

5. Какая случайная величина имеет нормальный закон распределения?

6. Как выглядит кривая плотности нормального распределения?

7. Как найти вероятность попадания нормально распределенной случайной величины в заданный интервал?

8. Как формулируется правило «трех сигм»?

Введение в теорию случайных процессов

Случайной функцией называют функцию, значение которой при каждом значении независимой переменной является случайной величиной.

Случайным (или стохастическим) процессом называют случайную функцию, для которой независимой переменной является время t .

Иначе говоря, случайный процесс – это случайная величина, изменяющаяся во времени. Случайный процесс X (t ) на является определенной кривой, он является множеством или семейством определенных кривых x i (t) (i = 1, 2, …, n ), получаемых в результате отдельных опытов. Каждую кривую этого множества называют реализацией (или траекторией) случайного процесса.

Сечением случайного процесса называют случайную величину X (t 0), соответствующую значению случайного процесса в некоторый фиксированный момент времени t = t 0 .