Методика измерения петли фаза ноль. Территория электротехнической информации WEBSOR. Зачем нужно измерение сопротивления петли фаза-нуль

Windows

Представить себе жизнь современного человека без электричества и разнообразных электроприборов попросту невозможно. Сборку различных агрегатов и электрических схем можно выполнить самостоятельно. Необходимо лишь в точности следовать имеющейся документации, а также проводить замер полного сопротивления цепи фаза-ноль, что позволит обеспечить беспроблемность эксплуатации электрооборудования и его полную безопасность.

Параметры защиты

Электрический ток имеет разрушительную силу, поэтому опасен для оборудования, материальных ценностей и живых организмов. Для защиты от поражения высоким напряжением в прошлом использовались различные изоляции из диэлектриков и проводились замеры параметров работы электролиний.

Сегодня при эксплуатации разнообразных электроустройств используются всевозможные устройства защитного отключения и автоматические выключатели, которые обеспечивают полную безопасность эксплуатации оборудования. Также применяются защитные меры, в том числе разделение рабочего нуля и заземление электротехники.

В процессе эксплуатации параметры электросетей и используемого оборудования может изменяться, что объясняется особенностями работы техники и износом силовых линий.

Потребуется на регулярной основе выполнять проверку соответствия текущих характеристик требуемым нормативам по безопасности электрических сетей. Только так можно будет обеспечить полную беспроблемность эксплуатации техники, исключив одновременно поражение электротоком.

Выполняются следующие замеры и контроль:

Подобные работы не представляют особой сложности, поэтому, имея начальные навыки в электротехнике и используя соответствующее оборудование, можно все замеры выполнить самостоятельно, что обеспечивает правильность работы техники и экономит расходы домовладельца на обращение к профессиональным специалистам.

Контроль параметров электросети выполняется на постоянной основе, вне зависимости от типа приборов и режимов их эксплуатации.

Для чего осуществляют измерение

Основной задачей выполнения измерения петли фазы-ноль является защита кабелей и электрооборудования от перегрузок, которые могут возникать в процессе эксплуатации техники. Высокое сопротивление электрокабелей приводит к перегреву линии, что, в конечном счёте, может спровоцировать короткое замыкание и пожар. На показатели фазы влияют различные параметры, в том числе окружающая среда, характеристики воздушной линии, качество кабеля.

При выполнении замеров в обязательном порядке включают контакты имеющейся автоматической защиты, контакторы, рубильники, проводники напряжения к электроустановкам. В качестве таких проводников используются силовые кабели, которые подают в фазу-ноль к запитываемой технике.

Полное сопротивление фазы-ноль рассчитывается с помощью специальных формул, которые учитывают материал и сечение проводников, протяжённость линии и ряд других параметров. Получить максимально точные результаты измерений можно лишь обследовав физическую цепь, к которой подключены различные электроустройства.

При наличии в электроцепи устройства защитного отключения его при выполнении измерений в обязательном порядке отключают, что позволяет получить максимально точные данные. Используемые УЗО при прохождении больших токов обесточивают сеть, поэтому получить достоверные результаты будет невозможно.

Существующие методики расчетов

Измерение фазы-ноль может выполняться с помощью различных методик. В промышленности и с электрооборудованием, где требуется максимально возможная точность расчетов, используются специальные приборы, которые имеют минимальную погрешность. Также в таком случае используются соответствующие формулы, которые учитывают различные факторы, влияющие на качество полученных данных. В бытовых условиях будет достаточно использование простейших измерителей, что поможет получить необходимую информацию.

Наибольшее распространение получили следующие методики измерения петли фаза-ноль:

  • Метод падения напряжения.
  • Метод короткого замыкания в цепи.
  • Использование амперметра-вольтметра.

При использовании метода снижения напряжения все замеры проводят при отключении нагрузки, после чего в цепь включают нагрузочное сопротивление с заранее рассчитанной величиной. С помощью специального устройства измеряется величина нагрузки в цепи, после чего полученные результаты сверяются с эталоном, проводятся соответствующие расчеты, которые сравниваются с нормативными данными.

Метод коротких замыканий в цепи подразумевает подключение к сети специального прибора, создающего искусственные короткие замыкания в необходимой потребителю точке. С использованием специальных устройств определяют величину тока короткого замыкания, а также время срабатывания защиты. Полученные данные сверяются с нормативными показателями, после чего рассчитывается соответствие электроцепи действующим нормативам и требованиям.

При использовании метода амперметра-вольтметра снимают с цепи питающее напряжение, после чего подключают к сети понижающий трансформатор, замыкают фазный провод действующей электроустановки. Полученные данные обрабатывают, и, используя специальные формулы, определяют необходимые параметры.

Наибольшее распространение на сегодняшний день получила методика измерения петли фаза-нуль методом подключения нагрузочного сопротивления. Такой способ сочетает простоту использования, максимальную точность, поэтому он применяется как в быту, так и при необходимости получения сверхточных данных. При необходимости контроля показателя фазы в одном здании сопротивление нагрузки подключают в самом дальнем доступном участке цепи. Подключение приборов осуществляется к предварительно защищенным контактам, что позволит избежать падения напряжения и ослабления силы тока.

Первоначальные измерения выполняют без подключения нагрузки, после чего с помощью амперметра производится контроль с точной нагрузкой. По результатам полученных данных рассчитывают сопротивление петли фаза-ноль.

Также имеется возможность использования специальных устройств, которые с помощью соответствующей шкалы позволяют получить нужное сопротивление, обеспечивая максимально возможную точность рассчитанных данных.

При измерении этого показателя рассчитанных данных хватает для определения качества электросети в быту. В промышленности при выполнении соответствующего контроля составляется протокол, куда заносят все полученные величины. В таком протоколе выполняют соответствующие расчеты, после чего бумага подписывается инженерами и прикладывается к общей нормативно-технической документации.

Используемые высокоточные приборы

Для измерений и расчетов фазы могут применяться как стандартные амперметры и вольтметры, использование которых не представляет сложности, так и узкоспециализированные приборы. Последние обеспечивают максимально возможную точность полученных данных по параметрам электросети. Наибольшее распространение получили следующие измерительные приборы.

M417 - это надежный проверенный годами прибор, разработанный специально для измерения показателя сопротивления в цепи фазы-ноль. Одной из особенностей этого прибора является возможность проведения всей работы без снятия питания, что существенно упрощает контроль за состоянием электросети. Этот аппарат использует метод падения напряжения, обеспечивает максимальную возможную точность полученных расчетов. Допускается использование М417 в цепи с глухозаземленной нейтралью и напряжением в 380 Вольт. Единственный недостаток использования этого приспособления - это необходимость калибровки устройства перед началом работы.

MZC-300 - измерительное устройство нового поколения, которое построено на базе мощного микропроцессора. Приборы используют метод падения напряжения с подключением сопротивления в 10 Ом. MZC-300 обеспечивает время замера на уровне 0,03 секунды и может использоваться в сетях с напряжением 180−250 Вольт. Прибор для обеспечения точности данных подключают в дальней точке сети, после чего нажимают кнопку Старт, а полученный результат выводится на небольшой цифровой дисплей. Все расчёты выполняет микропроцессор, что существенно упрощает контроль фазы.

ИФН-200 - многофункциональный прибор, позволяющий выполнять измерения фазы. Работает устройство с напряжением 180−250 Вольт. Имеются соответствующие разъемы для упрощения подключения к сети, а использование этого приспособления не представляет какой-либо сложности. Ограничение на измерении в цепи составляет 1 кОм, при превышении которого срабатывает защита и отключается устройство, предотвращая его перегрузку. Выполнен прибор на базе мощного микропроцессора и имеет встроенную память на 35 последних вычислений.

Одним из важных факторов в работе электрооборудования считается продолжительность его эксплуатации. Большое значение имеет надежная и устойчивая работа всех приборов и устройств. При различных повреждениях, коротких замыканиях и перегрузках, должно обеспечиваться моментальное срабатывание защитной аппаратуры и отключение опасного участка.

Поэтому, необходимо заранее предусмотреть исправность самого электрооборудования и средств защиты, где большое значение имеет петля фаза-ноль.

Физическое понятие петли фаза-ноль

Во всех электроустановках, напряжением до 1000 вольт оборудуются системы глухого заземления. В такой системе, петля фаза-ноль представляет собой контур, образующийся в результате соединения проводника фазы и нулевого рабочего провода. В некоторых схемах, фазный проводник может соединяться с защитным проводником. Полученная цепь, во всех случаях, обладает собственным сопротивлением.

Теоретические расчеты сопротивления петли представляют серьезную проблему. Это объясняется переходными сопротивлениями, которые имеются в рубильниках, контакторах, автоматах и прочей аппаратуре, включаемой в общую цепь. Особую сложность представляет вычисление точного пути токов при аварийных ситуациях, где нужно учитывать и влияние различных металлических конструкций.

Поэтому, для получения точных данных о значении сопротивления, существуют специальные приборы, позволяющие автоматически учитывать все необходимые параметры.

Проведение измерений

Необходимость измерения петли фаза-ноль производится в определенных ситуациях. Прежде всего, это мероприятие осуществляется при вводе электроустановок в эксплуатацию после монтажа или реконструкции. В этом случае, тестирование проводится во время приемосдаточных испытаний. Внеплановые измерения могут проводиться по требованию организаций, контролирующих электробезопасность установок, а также, в любое время, по желанию клиента.

Когда измеряется петля фаза-ноль, в обязательном порядке определяется величина сопротивления. Этот показатель получается в результате параметров сопротивления, образующегося в обмотках питания, фазном и нулевом проводнике. Одновременно измеряются переходные сопротивления контактов коммутационной аппаратуры.

Кроме сопротивления, измеряется величина тока, образующегося при коротком замыкании. Для этого применяется специальный прибор, с помощью которого возможно автоматически получить все необходимые показатели.

После проведения всех измерений все полученные результаты сравниваются с уставкой, рассчитанной на тот или иной автоматический выключатель.

Все мы хотим видеть электроснабжение нашего электрооборудования безопасным и безупречным, но не всегда желаемое можно выдавать за действительное. В процессе беспощадной эксплуатации энергосистемы и электрооборудования, пользователи забывают о том, что её надо периодически обследовать и заранее выявлять всевозможные неисправности. Не стоит дожидаться, когда пропадёт фаза в недрах скрытой электропроводки , а для включения электрооборудования срочно надо искать калоши и диэлектрические перчатки , подпирая палкой постоянно отключающийся автоматический выключатель. Как же уберечь себя от свалившихся на голову неприятностей? Для предупреждения и устранения вышеперечисленных неисправностей, требуется периодически проводить комплекс электроизмерений. В этой статье мы хотим рассказать вам о замере сопротивления цепи «фаза - нуль». Как и для каких целей требуется проводить замер сопротивления цепи «фаза - нуль».

Статьи цикла:»Электролаборатория и электроизмерения»:
1. Электролаборатория и электроизмерения. Введение
2. Что такое электролаборатория и для чего нужны электроизмерения
3. Электролаборатория. Смета на проведение комплекса электроизмерений электросети. Расчёт стоимости работ на электроизмерения
4. Электролаборатория проводит визуальный осмотр электропроводки и электрооборудования
5. Электролаборатория. Замер заземления. Электропроводка. Электрооборудование
6. Электролаборатория. Замер сопротивления изоляции. Электроизмерения. Электропроводка
7. Электролаборатория. Замер сопротивления цепи “фаза-нуль”. Электроизмерения
8. Электролаборатория – замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО)
9. Электролаборатория выполняет испытания (прогрузку) автоматических выключателей
10. Электролаборатория проводит электроизмерение “Замер сопротивления заземляющих устройств”

Протокол электроизмерения петли "фаза - нуль"

Читайте также:


    Очень часто специалисты электролаборатории (инженеры эл.наладчики) слышат в свою сторону укоры, что работа по комплексу электроизмерений бессмысленна и бесполезна, так как она влечёт за собой дополнительные затраты со стороны заказчиков. Давайте...


    Игорь Какое именно оборудование проверяется и какова периодичность профилактического измерения электрооборудования и электросетей в офисных центрах. Ответ: Испытаниям и электроизмерениям подлежат все электроустановки здания, от вводного аппарата защиты в вводно-распределительном устройстве до розеток...


    Андрей Электролаборатория в результате замера сопротивления петли “фаза-нуль” на мостовом кране (1971 года ввода в эксплуатацию) выдала заключение, что вводной автомат (А3144 600А Iуст. тепл=750А, Iкз=4200А) не прошел проверку, т.к. Zфаза-0=0.35 ...


    Виктор Степанович Что включает в себя замер полного сопротивления цепи ” фаза-нуль”? Подскажите, как часто должен производиться замер полного сопротивления цепи “фаза-нуль”? В соответствии с ПТЭЭП для контроля чувствительности защит к однофазным...


    Вячеслав Выполняя электроизмерения, замер сопротивления петли “фаза-нуль”, прибор показал на одной фазе 1.3 Ом, на остальных - 0.8 Ом. Питающий 4 х 6, медь. Длина кабельной линии 40метров, установлен...

15 Комментария(-ев) на ”Электролаборатория. Замер сопротивления цепи «фаза-нуль». Электроизмерения”

    Здравствуйте!

    Подскажите каким проводом будит правильно заземлить передвижную эл.установку 380В. Проводом ПЩ или ПВЗ(в оболочке). Просто на одном комплексе видел заземление смонтированное проводом ПЩ который был в прозрачной оболочке на барабане.Комплексы нового поколения Узо итп.

    Здравствуйте,Алексей!Согласно ПУЭ, заземляющие проводники,а также защитные, и проводники уравнивания потенциалов в передвижных электроустановках должны быть медными, гибкими.Наименьшее сечение заземляющих проводников должно равняться:
    1.сечению фазных проводников, при сечении до 16 кв мм.,
    2.16 кв.мм. при сечении фазных проводников от 16 до 35 кв мм,
    3.сечению фазного провода пополам при сечении фазного провода более 35 кв мм.

    Здравствуйте! Большое спасибо за ответ. Про сечение ясно.Так каким проводом должно(и может допускаться) выполнение заземления. Многопроволочным проводом с полвинилхлорид. изоляцией или ПЩ без изоляции? Вот на это мне нужен ответ. Спасибо

    Здравствуйте! Проверяемый щиток состоит из вводного автомата и пяти отходящих. Проверяю петлю фаза-ноль. С отходящими все понятно: оцениваются по току КЗ. Но как вводить в отчет этот вводной автомат, и каковы критерии его оценки? Как быть с током КЗ для него?

    Здравствуйте, Олег!
    Значение тока однофазного короткого замыкания не нормируется, однако в соответствии с ПУЭ-7 ток должен быть достаточным для обеспечения требуемого времени срабатывания. Вам необходимо во время замеров сопротивления петли «фаза-нуль» определить фактическое значение тока однофазного короткого замыкания. Значение тока однофазного короткого замыкания определяется расчетным путем на основании значения сопротивления петли «фаза-нуль», полученного путем замеров во время испытаний. Требуется убедиться, что фактический ток однофазного короткого замыкания обеспечивает время срабатывания защитного аппарата, не превышающее значений, нормированных п. 1.7.79 ПУЭ-7 п. 1.7.79, для чего необходимо иметь времятоковую (обратнозависимую) характеристику этого защитного аппарата. Если документация завода-изготовителя на соответствующие защитные аппараты, содержащая времятоковые характеристики, отсутствует, то эти характеристики следует снимать при выполнении пусконаладочных работ или периодических электроиспытаний.

    Вы можете зарегистрироваться на форуме и более подробно обсудить «

    Здравствуйте, Георгий!
    Ваш вопрос перенаправлен на. Вы можете зарегистрироваться на форуме и более подробно обсудить « » с участниками форума.

Сопротивление цепи фаза - ноль

В статье рассмотрены метод расчета сопротивления цепи фаза - ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

В общем случае сопротивление цепи фаза ноль R L - N равно:

где Z т /3 - сопротивление трансформатора, Ом; R Σ пер - суммарное переходное сопротивление контактов, Ом; R Σ авт -суммарное сопротивление всех автоматических выключателей, Ом; R n - удельное сопротивление n-го участка цепи Ом/км (по таблице 1); L n - длина n-го участка цепи, км; R дуги - сопротивление дуги в месте короткого замыкания, Ом.

Таблица 1

Сечение фазных жил мм 2

Сечение нулевой жилы мм 2

Полное сопротивление цепи фаза - ноль, Ом/км при температуре жил кабеля +65 градусов

Материал жилы:

Алюминий

Z цепи (кабеля)

Z цепи (кабеля)

Таблица 2

Мощность трансформатора, кВ∙А

Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

Таблица 3

I ном. авт. выкл, А

50 и более

Таблица 4

R цепи, Ом

При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза - ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

R L - N = R расп + R пер.гр + R авт.гр + Rn гр ∙Ln гр +Rдуги (2)

где, R расп - измеренное сопротивление цепи фаза - ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; R пер.гр - сопротивление переходных контактов в групповой линии, Ом; R авт.гр - суммарное сопротивление автоматических выключателей - вводного группового щита и отходящей групповой линии, Ом; Rn гр - удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Ln гр - длина n-й групповой линии, км.

Рассмотрим процесс вычисления сопротивления цепи фаза - ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

Исходные данные:

Трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник - звезда» - по таблице 2 находим Zт/3=0,014 Ом;

Питающая сеть - кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой - 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

Распределительная сеть - кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

Групповая сеть - кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

Автоматический выключатель отходящий линии - 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

Переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

Суммируем все полученные значения и получаем сопротивление цепи фаза - ноль без учета сопротивления дуги R L - N =0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины R L - N =0,80 Ом+0,075 Ом=0,875 Ом.

В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя , имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 - 1,25 раза.

В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза - ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

U ф / R L - N =220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Максимальное сопротивление цепи фаза - ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом - 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом - 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза - ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия.

Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке . Этот метод электрики называют измерением сопротивления петля фаза ноль.

Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их. Что это такое, и как формируется проверочная схема.

Видео измерения петля фаза ноль

Как измеряется сеть

Что это значит?

Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

Как измерить сопротивление петля фаза ноль

Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу , которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2).


Процесс измерения петля фаза ноль

Где провести замер

Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите . Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

Цель проводимых замеров


Замер сопротивления петля фаза ноль

Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть . Поэтому в данном случае используется формула:

I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

  • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
  • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петли фаза ноль.

Что это такое, и как формируется проверочная схема

Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

Итак, от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.

Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.

Как измеряется сеть

Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:

Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:

  • Активная составляющая сопротивления сети.
  • Реактивная, состоящая из емкостной и индуктивной части.

Что это значит? Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

  • Активное – это потребитель и провода. Это самая большая часть сопротивления.
  • Индуктивное – это сопротивление встроенных обмоток.
  • Емкостное – это сопротивление отдельных элементов.


Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

Внимание! Нагрузка на розетке должна быть стабильной в процессе проведения замеров. Это первое. Второе – оптимальным вариантом считается, если в схеме ток будет силой от 10 до 20 ампер. В противном случае дефекты сетевого участка могут не проявиться.

Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой. Поэтому сначала надо высчитать сопротивление при разных величинах напряжения. Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:

Rп=R2-R1, где R2 – это сопротивление петли при нагрузке, R1 – без таковой.

Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2). Правда, такие измерительные приборы сегодня используются в основном в измерительных лабораториях. Обращаться с ними надо уметь. К тому же такие приборы требуют частого проведения тестирования.


Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.

Где провести замер

Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

Цель проводимых замеров

Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.

Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали. К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию. Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.


Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:

Iкз=Uном/Rп.

Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.

Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:

I=16х10х1,1=176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

  • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
  • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

Общие требования по определению сопротивления петли «фаза-нуль» заключается в измерении тока короткого замыкания с целью проверки времени срабатывания защитных устройств от величины этого тока при замыкании фазы на корпус электроаппарата.
При этих измерениях проверяется согласованность параметров цепи «фаза-нуль» с характеристиками автоматических устройств отключения защитных аппаратов, при возникновении в этой цепи коротких замыканий, по времени отключения.
По измеренному сопротивлению и полученному расчетом результату однофазного тока короткого замыкания определя¬ют время автоматического срабатывания защитного аппарата. Это время должно быть в норме требований ПУЭ (п. 1.7.79) по защите от поражения электрическим током при косвенных прикосновениях путем автоматического отключения питания.
Этот ток должен иметь определенную кратность по отношению к номинальному току плавкой вставки предохранителя или электромагнитного расцепителя автоматического выключателя.

КАК ПРОВОДЯТ ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ПЕТЛИ «ФАЗА-НУЛЬ»:

1.Если линия электроснабжения предусматривает несколько электроприборов — измерения проводят на самой удаленной точке (например: на одной линии несколько розеток и тд.).

2. Если линия электроснабжения предусматривает один источник потребления электроэнергии — измерения проводят непосредственно в месте присоединения к нагрузке (насос, электродвигатель, розетка, тэн и тд.)

Допустимые нормированные величины:

Сопротивление петли «фаза-нуль» и токи однофазных замыканий определяют:

  • перед приемкой электрооборудования в эксплуатацию;
  • в сроки планово-предупредительных или капитальных ремонтов.

По сопротивлению петли «фаза-нуль», обозначаемому Z ф0 (Ом), ток короткого замыкания I кз (А) определяется по формуле:

Iкз = U 0 /Z ф0

где U 0 — фазное напряжение (В).

В системе с глухозаземленной нейтралью в электроустановках до 1000 В при однофазном замыкании на корпус время отключения поврежденного участка цепи должно соответствовать п. 1.7.9 ПУЭ согласно нижеуказанной таблице 1.

Таблица 1: Допустимое (наибольшее) время отключения защиты в системе (TN) с глухозаземленной нейтралью

Указанные ограничения по времени отключения распрос­траняются и на групповые сети.

В цепях с распределительными щитами, групповыми, ввод­ными и этажными щитками время отключения не должно превышать 5 секунд.

В цепях, питающих только стационарные электроприемyики от РУ, допускается также время автоматического отклю­чения питания до 5 секунд с учетом выполнения следующих ме­роприятий:

Полное сопротивление защитного проводника между глав­ной заземляющей шиной и корпусом распределительного уст­ройства (Z P E ) должно удовлетворять следующему требованию:

ZPE =U0 /Zф0 ≤50В

т.е. имеется в виду, что
1) падение напряжения на защитном проводнике при воз-можном замыкании одной фазы не превысит сверхнизкого на-пряжения (ССН) равного 50 В (ПУЭ п. 1.7.43);
2) к шине РЕ РУ присоединена дополнительная система уравнивания потенциалов, охватывающая те же проводящие части, что и основная система уравнивания потенциалов.

В системах с изолированной нейтралью (IT) время защит­ного автоматического отключения питания при двойном за­мыкании на открытые проводящие части не должно превы­шать значений, приведенных в таблице 2.

Таблица 2
Наибольшее допустимое время автоматического отключения для систем с изолированной нейтралью (IT)

В системах с изолированной нейтралью аппараты и обо­рудование имеют защиту только от сверхтоков. Поэтому усло­вия данной таблицы проверяются измерением параметров цепи «фаза-фаза» или током междуфазного замыкания. В це­лом такие установки до 1000 В с системой (IT) широкого прак­тического применения не находят.

Особенности измерения петли «фаза-нуль»

Описываемые методы измерений петли «фаза-нуль» дают приблизительные значения величины сопротивлений или токов короткого замыкания, т.к. они не учитывают векторную природу напряжения, т.е. реальные условия, существующие во время замыкания на «землю». Такая степень приближен­ности приемлема при условии, что реактивное сопротивле­ние испытываемой цепи незначительно.

До выполнения измерения сопротивления петли «фаза- нуль» рекомендуется провести испытание сопротивлений защитных проводников, их неприрывности, а также сопротивлений изоляции элементов электроустановки рассматриваемого объекта в целом.

Проверка сопротивления петли «фаза-нуль» производится в обязательных случаях в электроустановках напряжением до 1000 В с глухозаземленной нейтралью при вводе в эксплуатацию и в действующих электроустановках при подключении новых потребителей к действующим электросетям.

Пример проверки сопротивления петли «фаза-нуль»:

После ремонта в помещении, была дополнительно проложена розеточная группа проводом ВВГнг 3х2,5 мм 2 . На самой дальней розетке произвели измерение сопротивления петли «фаза-нуль» с помощью прибора ПЗО-500 ПРО.

Согласно полученных данных и применив формулуIкз = U 0 /Z ф0 получимIкз =226/0,6 ,

Iкз = 376,7 А.

На розеточной группе установлен автоматический выключатель ВА 21-29 номиналом 16А, с электромагнитным расцепителем 10 I n .

Вывод: розеточная группа соответствует НД

Электролаборатория ГК Эколайф выполняет измерение сопротивления петли «фаза-ноль» на основе действующего Свидетельства о регистрации электролаборатории, с учетом действующих нормативных документов: Правил Устройства Электроустановок, Правил Технической Эксплуатации Электроустановок Потребителей, ГОСТ и других.

Договор на услуги электолаборатории

Наша компания работает с юридическими и физическими лицами. Мы заключаем договор на услуги электролаборатории, который является документом, четко определяющим стоимость и сроки выполнения работ. Заранее обговоренные условия снижают риски для обеих сторон, а также обеспечивают выгоду сделки для продавца и покупателя.
Подписание актов выполненных работ и приема-передачи оборудования означает успешное окончание работ. Мы предоставляем полный пакет документов, в том числе накладные, акты, счета-фактуры и кассовые чеки при оплате наличными, акты пуско-наладки, параметры настройки системы.

Выезд инженера для расчета стоимости работ производится бесплатно

Введение

Все слышали фразу "Человек быстро привыкает к хорошему". Но всегда ли мы её осознаём? Вспомните ситуацию, когда человек сидит за компьютером или смотрит телевизор, и происходит отключение электроэнергии. Многие раздосадованные люди в этот момент решают, что если уж отдохнуть не получилось, то нужно пойти что-нибудь сделать полезного. И достают пылесос или пытаются включить стиральную машину, забывая, что и эти приборы работают от электричества!

Именно для того, что подобные отключения были более редкими, а система электроснабжения оставалась надёжной, необходимо проведение технического обслуживания и профилактических работ. И в данной статье пойдёт речь об очень важном исследовании, которое является обязательным в составе Технического отчёта электротехнической лаборатории.

Необходимость проведения замера петли "фаза-ноль"

Конечно же, деятельность любой электролаборатории направлена на предупреждение аварийных ситуаций в работе электроустановок всех типов. Проверка параметров цепи «фаза-ноль» - не исключение. Но для того чтобы понять, на предупреждение каких именно негативных последствий направлено данное измерение, нужно знать конечную цель этого измерения.
Ни для кого не секрет, что жилы одного кабеля ни в коем случае нельзя замыкать. Но если это произошло, то произойдёт очень красочное и яркое зрелище, под названием "короткое замыкание" (или сокращённо "К.З."). Это информация так же известна всем со школьной скамьи из уроков физики. А вот что мало кто помнит или не знает вообще, так это о том факте, что при коротком замыкании происходит резкий скачок тока, в результате которого жилы кабеля невероятно сильно нагреваются, в доли секунды плавят и воспламеняют изоляцию. А если основание, по которому проложен кабель, горючее, то вероятность возникновения пожара неминуема.

Именно поэтому в электроустановках используют автоматические устройства защитного отключения, такие как автоматические или дифференциальные выключатели, устройства защитного отключения (УЗО), плавкие вставки и т.п. Их назначение - вовремя прекратить подачу электричества в линию с коротким замыканием. И, говоря "вовремя", имеются в виду доли секунды, ведь докрасна нагретый кабель и салют из искр способны спровоцировать пожар в очень короткий промежуток времени.

Из всего вышеизложенного напрашивается очевидный вывод: для того, чтобы избежать разрушающих последствий короткого замыкания, необходимо рассчитать и установить нужное по характеристикам устройство защиты. Собственно, ради этого и проводится проверка параметров цепи «фаза - нуль».

Периодичность испытаний петли фаза ноль

Электричество, энергоносители и энергопотребители - вещи динамические, потому что зависят от множества условий, параметров и характеристик. Конечно, никто не говорит о резких и глобальных изменениях, но некоторые колебания электрической сети, безусловно, присущи. Именно поэтому за состоянием элементов электроустановок необходимо постоянно следить и проводить периодические испытания их составляющих.

Для наглядности можно рассмотреть вот такой пример. Подавляющее большинство людей думают, что в каждой бытовой розетке используется напряжение ровно 220 вольт. В действительности, напряжение может быть различным даже в соседних зданиях. Более того, ГОСТами это предусмотрено: допустимое отклонение +/- 5%, предельное отклонение +/- 10% от номинальных 220 или 230 вольт. Следовательно, если замер напряжения в сети 220В показывает параметр, находящийся в диапазоне от 198 до 242 вольт, то это норма. А если в качестве номинального используется напряжение 230В, то верхний порог может достигать 253 вольт, и это так же будет нормой. Нормой, с предельным отклонением, но всё же нормой!
Получается, что максимально допустимая вилка разницы напряжения в сети, в зависимости от номинальных 220 или 230 вольт, может составлять 44 или 46 вольт (от -10% до + 10%) соответственно. Серьёзный перепад напряжения, не правда ли?! И подобные перепады, безусловно, не лучшим образом влияют на электроустановки и систему электроснабжения в целом. А если забежать немного вперёд и учесть, что ток короткого замыкания является отношением напряжения цепи к полному сопротивлению её проводников, то можно смело заявить, что величина напряжения напрямую влияет на величину тока короткого замыкания, и чем выше напряжение, тем ток при коротком замыкании будет больше.

Приведённая в данном примере вариантность параметра сети лишь частность. Таких примеров можно назвать бесконечное множество. Причин, влияющих на возникновение подобных примеров, много. В этом списке источники энергоснабжения (электроснабжающие подстанции, промежуточные трансформаторы), качество и состояние электрических проводников и электроустановок, количество потребителей и т.д. Главное - нужно понимать, что состояние этих "причин" не статично, оно постоянно изменяется. Ведь может же в сети измениться количество потребителей? Конечно, может! Следовательно, напряжение в сети хоть немного да изменится. А значит и ток короткого замыкания тоже изменится. Это и является основанием для проведения периодических проверок как отдельных цепей сети, так и электроустановки в целом.

Отметим, что "Правилами Устройства Электроустановок" (ПУЭ ), а так же "Правилами Технической Эксплуатации Электроустановок Потребителей" (ПТЭЭП ), проведение проверки параметров петли "фаза-ноль" регламентировано не реже одного раза в три года . Для электроустановок, расположенных в опасных зонах, не реже одного раза в два года .

Помимо периодических проверок, замеры петли "фаза-ноль" в обязательном порядке необходимо проводить после монтажа электроустановки, а также после проведения капитального её ремонта .

Суть и методика проведения проверки сопротивления петли фаза ноль

Если кратко, то суть процесса заключается в определении тока короткого замыкания на отдельно взятой линии сети, и сопоставление этого параметра с установленным на той же линии автоматическим устройством защиты. Если перефразировать, то измерение призвано выявить, верно ли подобраны автоматические выключатели по токовременным характеристикам.

А раз измерение так или иначе сводится к характеристикам автоматических устройств защиты, то стоит немного рассказать и о них.
Вообще, устройства защиты, будь то автоматический выключатель, диффавтомат, УЗО или любой другой - устройство довольно простое. И характеристик оно имеет не так уж и много. Но так как в рамках данной статьи нам интересны лишь время-токовые характеристики, то остановимся именно на них.
Любой автоматический выключатель имеет на своей лицевой стороне маркировку. Среди прочих характеристик, там указаны торговая марка, номинальное напряжение, ток и частота сети, для которой этот автомат предназначен, и прочее. Так же, в обязательном порядке маркировка содержит информацию о время-токовой характеристике отключения устройства. Маркируется эта характеристика указанием латинской буквы B, C, D или К (для однофазных автоматов). Следом за этой буквой следует цифра, обозначающая номинальный ток автоматического выключателя. Выглядеть эта аббревиатура может, например, так: "В16", "С32" или "D50". Но так как нас интересует время и токовая величина срабатывания автомата при коротком замыкании, остановимся именно на них.

Что же обозначают буквы B, C, D и К? В этих буквах заключен очень простой смысл, а именно: при каком кратковременном превышении номинального тока автомат сработает (отключится). За основу этого параметра принят, как уже стало понятно, номинальный ток, а показатель превышения измеряется в кратном его увеличении.

Параметры кратности тока, соответствующие этим буквам, следующие:

Тип «B» - отключение автоматического устройства защиты произойдёт, если ток короткого замыкания будет превышать номинальный ток в 3 - 5 раз;
. тип «С» - такой автомат сработает при кратковременном скачке номинального тока в 5 - 10 раз
. тип «D» и «К» - автоматические выключатели этого типа будут эффективны, если номинальный ток увеличится в 10 - 14-ти кратном размере от номинала.

По времени срабатывания в зоне токов короткого замыкания автоматические выключатели подразделяются на:

Селективные - с отключением автоматического выключателя с выдержкой времени,
. нормальные (с временем срабатывания 0,02-1 секунды)
. быстродействующие (с временем срабатывания менее 0,005 секунды).

Теперь, зная параметры защитных устройств на каждой ветке электрической сети, остаётся сопоставить их с данными самой сети. Но, в отличие от автоматических выключателей, показатели сети не статичны и могут претерпевать изменения в процессе эксплуатации. Поэтому и необходимо с определённой периодичностью проводить проверку этих параметров с помощью измерения характеристик петли "фаза-ноль".

Саму процедуру проведения проверки параметров цепи "фаза-ноль" можно разделить на три этапа.

Проведение визуального осмотра;
. Непосредственное проведение измерений;
. Подведение итогов.

1 этап. Проведение визуального осмотра электроустановки

Во время осмотра, помимо исследования электроустановки, изучения документации и схем, проверки кабельных трасс и корпусов электрооборудования на предмет повреждений, проводят протяжку кабельных соединений в устройствах защиты. Проще говоря - затягивают болты на кабельных клеммах автоматических выключателях. Это крайне важное действие, без которого полученные результаты измерений могут быть просто неверными.

2 этап. Проведение измерений петли фаза ноль

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки.

Полученные данные обрабатывают и с помощью формул определяют нужный параметр. В последние годы именно этот метод завоевал наибольшую популярность.

В сущности, само по себе измерение достаточно примитивно. Оно заключается в определении точных показателей напряжения в сети и сопротивления измеряемых проводников - "фазы" с "нулём", или "фазы" с "землёй" - в зависимости от того, какая именно петля подвергается испытаниям. После подключения щупов прибора к клеммам, прибор автоматически выдаёт на экране показатель напряжения сети, а затем измеряет сопротивление одновременно на проверяемой линии и обмотке трансформатора. Оба значения сопротивления суммируются и получается величина сопротивления, которая будет необходима при дальнейших расчётах.

Для измерений выбирают самые дальние точки линий сети. Если такую точку определить сложно, то проводят измерения по всей линии. Под "точками" понимаются розетки, а так же оборудование, имеющее металлический корпус (станки, двигатели, светильники и т.д.)

После того, как получены оба значения - напряжение и сопротивление сети - можно переходить к расчётам, которые покажут ток короткого замыкания, и помогут определить, правильно ли установлены аппараты защиты.

3 этап. Проведение расчетов и составление протокола испытания

Составление протокола - это просто запись результатов проведения испытаний, и на нём мы остановимся позже. Сейчас же необходимо рассказать о проведении расчётов.

Ток короткого замыкания отражается в следующей зависимости:

где: Iкз - ток короткого замыкания; Uо - фазное напряжение; Rфо - полное сопротивление цепи.

На примере данный расчёт будет выглядеть следующим образом.
Предположим, что измерительный прибор выдал напряжение 225 вольт и полное сопротивление цепи 0,85 Ом. Автоматический выключатель, установленный для защиты этой цепи, имеет маркировку C32.

Итак, для начала нужно определить токовые рамки, в которых установленный автомат будет эффективен. Его маркировка С32 говорит о том, что это защитное устройство рассчитано на номинальное напряжение в 32 ампера, и относится к типу "С", что означает его эффективность проявляется при кратности тока короткого замыкания в пределах от 5 до 10 от номинального. Пятикратное умножение номинального тока дают нам 160 ампер, а десятикратное - 320. То есть, ток короткого замыкания должен быть в пределах от 160 до 320 ампер. Формула данного условия будет выглядеть вот так:

160А ≤ Iкз ≤ 320А

Теперь вычисляем непосредственно величину тока короткого замыкания. Исходные данные для этого расчёта - напряжение и полное сопротивление цепи - берём из результатов измерений.
Подставляем эти цифры в формулу и получаем следующее:

Iкз=225 В / 0,85 Ом=264,7 А

То есть, если в данной цепи произойдёт короткое замыкание, то при этом физическом явлении ток в цепи будет равен 264,7 ампера. Но в нашем примере автоматический выключатель успеет вовремя отреагировать, так как ток короткого замыкания находится как раз в промежутке от 160 до 320 ампер, то есть, в "пределах его юрисдикции"

Приведённый пример достаточно примитивен, но он наглядно показывает процесс исследования. На практике он может быть намного сложнее, в зависимости от того какая цепь сети подвергается замерам. Более того, трёхфазные сети так же подлежат проведению измерений, ведь они тоже попадают в область "электроустановки до 1000В", для которых, собственно, проверка параметров петли "фаза-ноль" актуальна.

Оборудование для проведения замера петли "фаза-ноль"

В сущности, для того, чтобы получить данные для расчёта величины тока короткого замыкания достаточно будет обычного вольтметра и омметра. Но прибор, который делает все необходимые измерения из одной точки, безусловно, гораздо удобнее.

Как уже упоминалось выше, оборудование для проведения испытаний может быть двух типов: работающее без нагрузки в сети, и работающее, когда сеть находится под напряжением. Такая разновидность обусловлена принципом работы приборов. Помимо этого, измерительное оборудование можно разделить на приборы полного цикла, сразу же вычисляющие ток короткого замыкания цепи, и приборы, измеряющие параметры, необходимые для расчёта тока К.З. на бумаге.

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

. Измеритель М-417 . Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.

. Измеритель MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.

. Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут - сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

Результаты измерений петли фаза ноль и возможные последствия

Как уже стало ясно, данное измерение имеет ряд особенностей.

Во-первых, "проверка параметров цепи «фаза - нуль» и непрерывности защитных проводников" (именно такое полное название имеет данное исследование) проводится, как правило, под нагрузкой. То есть, для проведения замеров не требуется отключение электроэнергии. Более того, без электричества в проводниках данный замер будет выполнить попросту невозможно, потому как для расчёта конечных данных требуются параметры напряжения сети и сопротивления жил кабелей.

Во-вторых, измерения проводят на проводниках, а результаты сопоставляют с установленными устройствами защитного отключения. Для данного замера это правильно и логично, но в сравнении, например, с измерением сопротивления изоляции или металлосвязью заземления, где проводимые измерения относятся к испытуемым элементам, данная процедура - исключение.

В третьих, в отличие от прочих испытаний, проводимых электротехническими лабораториями, проверка параметров цепи «фаза - нуль» не требует имитации реальной ситуации. Например, методика проверки автоматических выключателей заключается в их "прогрузке", то есть, подачи на них электрической нагрузки с целью выявления параметров его срабатывания (отключения). Для проверки сопротивления изоляции кабелей, их так же подвергают воздействию электричества с определёнными параметрами. В случае же с измерениями параметров цепи "фаза-ноль", электроустановка просто работает в штатном режиме, и этого более чем достаточно.

Эти особенности накладывают очень большую ответственность на электротехническую лабораторию в части точности и скрупулёзности проведения данной проверки. Не смотря на кажущуюся простоту всего процесса, он таит в себе очень много нюансов, которые способны повлиять на конечный результат. А если конечный результат будет неверным, то последствия ошибки могут быть колоссальными.

Для подтверждения этих слов можно привести самую простую ситуацию, которая, собственно, чаще всего и происходит, если расчёты не верны либо измерения были проведены с нарушениями. Вспомните пример, который был приведён для расчёта. Расчётный ток короткого замыкания цепи фаза-ноль составил 264,7 ампера, при установленном автоматическом выключателе С32. А теперь предположим, что по каким-то причинам для проверяемой ветки было выбрано устройство защиты с характеристикой D или К. Это автоматически переносит функциональные рамки данного автомата в пределы 320 - 448 ампер. То есть, при коротком замыкании этот автоматический выключатель не защитит линию. Следовательно, жилы проводов будут греться, изоляция кабелей будет плавиться и гореть, а автомат будет оставаться в положении "Включено" больше положенного времени. Для таких ситуаций производители предусматривают в защитных устройствах ещё и тепловую защиту, которая призвана разрывать цепь в случае, если электромагнитный расцепитель не сработал.

Если же рассмотреть обратную ситуацию, когда ток короткого замыкания превышает рамки функциональной эффективности автоматического выключателя, то в этом случае электромагнитный расцепитель, безусловно, сработает в положенное временное окно, и линия будет отключена.

Но есть ещё одна крайне неприятная ситуация, при которой может выгореть не только линия, но и само защитное устройство. В очень редких случаях ток короткого замыкания может превышать номинальный в сотни раз! Например, он может составлять 3000, 5000 или даже 10000 ампер. Не смотря на то, что такая ситуация кажется фантастичной, она вполне реальна и объясняется так: при коротком замыкании, когда сопротивление цепи равно нулю, сила тока стремится к бесконечности. В этот момент трансформатор подстанции выдаёт в цепь максимальный ток который он только может выдать.

Что же происходит в этот момент с проводниками и защитными устройствами? Не секрет, что ток создает вокруг проводника магнитное поле. Таким образом, очень большой ток может создать вокруг проводника замкнутых контактов автомата такое магнитное поле, которое препятствует их размыканию (силы пружины автомата недостаточно для разрыва контактов, слипшихся под действием сильного магнитного поля). Для защиты от таких случаев, для всех автоматических выключателей существует такой параметр как "предельно отключаемый ток". Маркируется он на лицевой стороне автомата в виде цифры, обведённой в прямоугольную рамку.
Таким образом цифра (например 4500А) означает, что автомат сможет разорвать цепь, через которую течет ток 4500А. А вот если ток будет 5000А, то автомат не сможет разорвать цепь. Следовательно, становится понятно, что автоматы с цифрой 6000А более надежны, чем автоматы с цифрой 4500А.

Электрическая безопасность жилых помещений по-прежнему остается актуальной. Ей необходимо уделять постоянное внимание.

Однако не все владельцы квартир квалифицированно занимаются этим, зачастую просто не представляя специфику вопроса.

Часто можно встретить случаи, когда приобретенный в магазине автомат сразу установлен в качестве основной защиты электрической проводки и введен в работу без необходимых проверок.

В тексте статьи приводятся советы домашнему мастеру по выбору автоматического выключателя для защиты бытовой сети и способам его проверок применительно к конкретно выполненной электропроводке с поясняющими картинками, схемами и видеороликом.

Они призваны помочь начинающему электрику избежать типичные ошибки монтажа, наладки и эксплуатации защитных устройств, сделать бытовую электрическую проводку надежной и безопасной .


Особенности работы автоматического выключателя

Конструкция устройства и принципы работы этой защиты . Рекомендую ознакомиться с ней.

Автоматический выключатель создан для оперативного снятия напряжения со схемы питания в случае ее перегрузки или возникновения короткого замыкания.

Защитные функции

Режим перегрузок

Первоначальную защиту электрической схемы раньше выполняли с помощью предохранителя, плавкая вставка которого просто перегорела и разрывала электрическую цепь под тепловым воздействием аварийного тока.

Эта функция осталась в конструкции автоматического выключателя. В нем она реализована тепловым расцепителем и выполняет защиту от перегрузок, снимая напряжение с защищаемого участка с выдержкой времени. Это необходимо для исключения частых отключений при возникновении переходных процессов от различных коммутаций схемы.

Определять зону работы теплового расцепителя, как и его второй составляющей - электромагнита отключения удобно с помощью времятоковой характеристики, указывающей зависимость времени срабатывания от величины аварийного тока, проходящего по контактам биметаллической пластины.

Режим коротких замыканий

При его возникновении к схеме прикладываются максимально возможные мощности, энергия которых способна расплавить металлические провода или вызвать пожар. Поэтому с целью сохранения оборудования необходимо выполнять очень быстрое снятие питания за тысячные доли секунды.

Это задача второй составляющей защиты автоматического выключателя: токовой отсечки, которую выполняет электромагнитный расцепитель.

Обе защиты автомата работают автономно, не зависят друг от друга, имеют собственные уставки и настройки. Однако они подобраны под конкретную величину рабочего номинального тока, призваны обеспечивать его нормальное прохождение без излишних, ложных отключений.

Принцип выбора автоматического выключателя

При определении его технических возможностей учитывают:

  • величину номинального тока в сети, на которую существенное влияние оказывает состояние электропроводки и подключаемые к ней нагрузки;
  • допустимый режим перегрузок;
  • отключающие способности возможных аварийных режимов.

Алгоритм выбора автоматического выключателя по номинальному току с учетом особенностей схемы электроснабжения показан на диаграмме.

Она позволяет сделать предварительный расчет необходимых параметров автоматического выключателя, подобрать его защитные характеристики.

Что такое петля фаза ноль

В любой бытовой схеме электрический ток совершает работу за счет того, что электродвижущая сила вторичной обмотки трансформаторной подстанции замыкается на цепочку, состоящую из последовательно подключенных электрических сопротивлений:

  • питающих шин 0,4кВ;
  • жил силовых кабелей и проводов;
  • включенных контактов защитных устройств;
  • контактных соединений коммутационных аппаратов и транспортных магистралей.

Всю эту собранную цепочку на языке электриков принято называть петлей фаза ноль. Ее техническое состояние, качество монтажа, эксплуатационные режимы и последующее обслуживание могут увеличить величину электрического сопротивления. Оно в большинстве случаев практически не оказывает значительного влияния на обычный режим электроснабжения.

Бытовые потребители будут нормально функционировать, а ток, проходя от обмотки трансформаторной подстанции по всем контактам, проводам и кабелям, совершает полезную работу.

Как бытовая проводка влияет на работу автоматического выключателя

Сопротивление петли фаза ноль может существенно сказаться на работе автоматических защит в аварийной ситуации: оно способно их сильно загрубить. Поэтому оно требует периодического измерения, учета и корректировок.

Увеличение сопротивления питающей цепочки может произойти:

  • в результате ослабления резьбовых зажимов на контактных соединениях;
  • ухудшения усилий сжатия пружинных контактов;
  • подключения дополнительных участков электроснабжения;
  • подгорания или засорения подвижных контактов коммутационных аппаратов;
  • по другим причинам.

Все эти факторы необходимо заранее, до момента возникновения аварии, выявить и своевременно устранить.

Еще один метод безопасного предотвращения последствий коротких замыканий - учет корректировок измененного электрического сопротивления этой петли и подбор по ним характеристик автоматического выключателя. Но для его обеспечения необходимо знать эту величину.

Как замеряется сопротивление петли фаза ноль

Работа состоит из трех этапов:

  1. подготовительная часть;
  2. электрические измерения;
  3. анализ полученных данных и принятие решения по ним.

Подготовительный этап

Общепринято до начала проведения электрических замеров выполнять внутренний осмотр оборудования, проверять состояние контактов, прожимать резьбовые соединения. Любые выявленные дефекты, включая должны своевременно устраняться: иначе просто теряется смысл всей последующей работы.

Особое внимание обращайте на механическое состояние каждой жилы провода в месте контактного соединения. Среди электромонтажников встречаются работники, которые пережимают ее, деформируя металл и ослабляя его прочность. Со временем в этом месте создается излишний нагрев, а затем - разрыв провода.

Для измерения выбирается наиболее удаленная по проводке розетка. Ее тоже необходимо осмотреть и к бытовой сети.

Основные принципы замера

Оценить качество настройки и работы автоматического выключателя можно двумя способами:

  1. прямым созданием короткого замыкания в розетке с замером времени его отключения защитой;
  2. косвенными методами.

Первый метод измерения является самым достоверным, эффективным, но наиболее опасным. Любые дефекты в электрической проводке или ошибки в выборе модели автоматического выключателя могут привести к возникновению опасных режимов, включая пожар. Поэтому на практике выполняют замер косвенным способом.

Для его проведения используют различные электронные приборы, работающие по принципу измерения падения напряжения на встроенном в корпус нагрузочном калиброванном сопротивлении.

При подключении измерителя в розетку вначале фиксируется напряжение холостого хода на ее контактах, а затем кратковременно коммутируется цепь через встроенный резистор. При этом определяется величина тока через него и разность приложенных потенциалов. По полученным данным автоматически осуществляются вычисления, а их результат высвечивается на табло.

На картинке приведен пример подобного измерения петли фаза ноль путь тока создается по цепочке рабочего ноля. Однако не стоит забывать о проверке качества монтажа РЕ проводника. Для этого прибор подключают между ним и фазой, а технология измерения остается прежней.

В схеме заземления зданий TN-C замер сопротивления петли фаза ноль выполняют только между фазой и PEN проводником, а в системах заземления ТТ и TN-C-S, как и в предыдущем случае.

Современные электронные измерители предоставляют сведения не только о полном сопротивлении измеренной петли, но и об активной и реактивной составляющих с отображением направлений векторов тока и напряжения, участвующих в замере.

Анализ результатов измерения

Полученные показания измерителя сопротивления петли фаза ноль используются чисто в практических целях. Они предназначены для выполнения одного из последующих действий:

  1. возможности продолжать эксплуатировать электрическую проводку и ее защиты в технически исправном состоянии без каких-либо переделок;
  2. необходимости усовершенствования проводимости проблемных участков электропроводки;
  3. срочного принятия мер по настройке защит автоматического выключателя или его замены.

Первый вывод

Его делают, когда:

  1. результат замера соответствует нормативам;
  2. ток рассчитанного короткого замыкания лежит в зоне срабатывания токовой отсечки автоматического выключателя.

Определить ток короткого замыкания в петле фаза ноль позволяет простое действие: деление напряжения холостого хода в розетке на полученный замером результат сопротивления. Здесь действует общеизвестный закон Ома.

Полученную величину необходимо сравнить с зоной срабатывания автоматического выключателя. Ее определяют по величине номинального тока с обеспечением запаса 10% по требованию ПУЭ и действующей характеристике электромагнитного расцепителя (в бытовой проводке применяют автоматический выключатель типов “B”, “C” или “D”.)

Модернизация проблемных мест

Сравнение двух результатов измерения сопротивления петли относительно рабочего ноля и РЕ проводника позволяет сделать вывод о качестве монтажа этих отдельных цепочек.

РЕ проводник выполняют цельной конструкцией без возможности создания разрывов. Он обладает повышенной проводимостью. Но на результате конечного измерения его цепи в схемах TN-C-S и ТТ может сказаться величина сопротивления контура заземления. Ее тоже необходимо измерить и учесть, но это отдельная тема.

Сопротивление цепочки рабочего нуля может быть чуть выше: в него входят контакты коммутационных аппаратов, отдельные провода и кабели, что учитывается при анализе.

Вывод о непригодности автоматического выключателя

К нему можно прийти, если зона отключения токовой отсечки электромагнитом расположена выше рассчитанного тока короткого замыкания. В этом случае сработают только резервные защиты теплового расцепителя, но они обладают задержкой по времени, что не приемлемо для мгновенного отключения. Такой автоматический выключатель требует замены.

Таким образом, измерение сопротивление петли фаза ноль имеет чисто практическое значение и производится для корректировки электрических параметров схемы электропроводки, уточнения правильности работы, встроенных в нее защит.

Заключительный вывод

Периодическое проведение этой операции обеспечивает электрическую безопасность жилых помещений, надежность электроснабжения, оперативное устранение возможных аварийных ситуаций.

Замер сопротивления петли фаза ноль выполняют аккредитованные специалисты электротехнических лабораторий. Инструментальной базы и навыков домашнего мастера для выполнения подобной работы явно недостаточно.